Differential Subordinations Associated with Multiplier Transformations

S. R. Swamy
Department of Computer Science and Engineering
R V College of Engineering
Mysore Road, Bangalore-560 059, India
mailtoswamy@rediffmail.com

Abstract. The object of the present paper is to derive some properties of analytic functions in the open unit disc which are defined by using multiplier transformations, applying differential subordinations techniques.

Mathematics Subject Classification: 30C45

Keywords: Analytic functions, Differential subordination, Multiplier transformations

1. INTRODUCTION

Let $A(p, n)$ denote the class of functions $f(z)$ of the form

$$f(z) = z^p + \sum_{j=p+n}^{\infty} a_j z^j \quad (p, n \in \mathbb{N} = \{1, 2, 3\ldots\}),$$

which are analytic in the open unit disc $U = \{z \in \mathbb{C} : |z| < 1\}$. In particular, we set $A(p, 1) = A_p$, $A(1, n) = A(n)$ and $A(1, 1) = A = A_1$, which are well known classes of analytic functions in U.

We consider the following multiplier transformation.

Definition 1.1([4]). Let $f(z) \in A(p, n)$. The extended multiplier transformation $I_{\lambda} \left(\delta, \lambda, l \right)$ on $A(p, n)$ is defined by the following infinite series:
\[I_p(\delta, \lambda, l)f(z) = z^p + \sum_{j=p+1}^{\infty} \frac{p + \lambda(j - p) + l}{p + l} a_j z^j, \]

where \(p, n \in \mathbb{N}, \delta, \lambda, l \in \mathbb{R}, \delta \geq 0, \lambda \geq 0, \text{and } l \geq 0. \)

It follows from (1.1) that \(I_p(0, \lambda, l)f(z) = f(z) \) and
\[(p + l)I_p(\delta, \lambda, l)f(z) = (p(1 - \lambda) + l)I_p(\delta, \lambda, l)f(z) + \lambda z (I_p(\delta, \lambda, l)f(z))'. \]

Remark 1.2. For \(n = 1 \), the operator \(D^\delta = I_i(\delta, 1, 0) \) was introduced and studied by Bhoosnurmath and Swamy [3], which reduces to the Salagean differential operator [10], when \(\delta = m, m \in \mathbb{N}_0 = \mathbb{N} \cup \{0\}. \) The operator \(D^\delta_{\lambda,m} = I_i(m, \lambda, 0) \) was introduced and studied by Al-Oboudi [2]. The operator \(I^m_i = I_i(m, 1, l) \) was studied recently by Cho and Srivastava [6] and by Cho and Kim [7]. The operator \(D^\delta_j = I_i(\delta, \lambda, 0) \) was introduced by Acu and Owa [1] and the operator \(I_p(m, 1, l) \) was investigated by Shivaprasad Kumar et al. [11]. The operator \(I^m_i = I_i(m, 1, l) \) was studied by Uralegaddi and Somanatha [12].

Mostafa and Aouf [9] and Catas et al. [5] have obtained many interesting results associated with the multiplier operator \(I_p(\delta, \lambda, l). \)

The main object of this paper is to present some more interesting properties of analytic functions defined by using multiplier transformations \(I_p(\delta, \lambda, l)f(z) \) associated with the class \(A(p, n). \)

In order to prove our main results, we will make use of the following lemma.

Lemma 1.3 [8]. Let \(\Omega \) be a set in the complex plane \(\mathbb{C}. \) Suppose that the function \(\Psi : \mathbb{C} \times U \to \mathbb{C} \) satisfies the condition \(\Psi(ix_2, y_1; z) \notin \Omega \) for all \(z \in U \) and for all real \(x_2 \) and \(y_1 \) such that
\[y_1 \leq -\frac{1}{2} n (1 + x_2^2). \]

If \(p(z) = 1 + c_n z^n + \ldots \) is analytic in \(U \) and for \(z \in U, \psi(p(z), z p'(z); z) \subset \Omega, \) then \(\text{Re}(p(z)) > 0 \) in \(U. \)

2. MAIN RESULTS

Theorem 2.1. Let \(\alpha \) be a complex number satisfying \(\text{Re}(\alpha) > 0 \) and \(\rho < 1. \) Let \(\delta, \lambda, l \in \mathbb{R}, \delta \geq 0, \lambda \geq 0, l \geq 0, f(z), g(z) \in A(p, n) \) and
Differential subordinations associated with multiplier transformations

\[\Re \left\{ \frac{I_p(\delta, \lambda, l)g(z)}{I_p(\delta + 1, \lambda, l)g(z)} \right\} > \gamma, 0 \leq \gamma < \Re(\alpha), z \in U. \]

Then

\[\Re \left\{ \frac{I_p(\delta, \lambda, l)f(z)}{I_p(\delta, \lambda, l)g(z)} \right\} > \frac{2(p + l)\rho + \lambda n\gamma}{2(p + l) + \lambda n\gamma}, z \in U, \]

whenever

\[\Re \left\{ (1 - \alpha) \frac{I_p(\delta, \lambda, l)f(z)}{I_p(\delta, \lambda, l)g(z)} + \alpha \frac{I_p(\delta + 1, \lambda, l)f(z)}{I_p(\delta + 1, \lambda, l)g(z)} \right\} > \rho, z \in U. \]

Proof. Let \(\tau = (2(p + l)\rho + \lambda n\gamma)/(2(p + l) + \lambda n\gamma) \) and define the function \(p(z) \) by

\[p(z) = (1 - \tau)^{-1} \left\{ \frac{I_p(\delta, \lambda, l)f(z)}{I_p(\delta, \lambda, l)g(z)} - \tau \right\}. \]

Then, clearly, \(p(z) = 1 + c_n z^n + c_{n+1} z^{n+1} + \ldots \) and is analytic in \(U \). We set

\[u(z) = \frac{\alpha I_p(\delta, \lambda, l)g(z)}{I_p(\delta + 1, \lambda, l)g(z)} \]

and observe from (2.1) that \(\Re(u(z)) > \gamma, z \in U \). Making use of the identity (1.2), we find from (2.3) that

\[(2.4) \left\{ (1 - \alpha) \frac{I_p(\delta, \lambda, l)f(z)}{I_p(\delta, \lambda, l)g(z)} + \alpha \frac{I_p(\delta + 1, \lambda, l)f(z)}{I_p(\delta + 1, \lambda, l)g(z)} \right\} = \tau + (1 - \tau)[p(z) + \frac{\lambda u(z)}{p + l}zp'(z)]. \]

If we define \(\psi(x, y; z) \) by

\[\psi(x, y; z) = \tau + (1 - \tau) \left(x + \frac{\lambda u(z)}{p + l} y \right), \]

then, we obtain from (2.2) and (2.4) that

\[\{ \psi(p(z), zp'(z); z) : |z| < 1 \} \subset \Omega = \{ w \in \mathbb{C} : \Re(w) > \rho \}. \]

Now for all \(z \in U \) and for all real \(x_2 \) and \(y_1 \) constrained by the inequality (1.3), we find from (2.5) that

\[\Re \{ \psi(ix_2, y_1; z) \} = \tau + (1 - \tau) \frac{\lambda y_1}{p + l} \Re(u(z)) \leq \tau - (1 - \tau) \frac{\lambda n\gamma}{2(p + l)} \equiv \rho. \]

Hence \(\psi(ix_2, y_1; z) \notin \Omega \). Thus by Lemma 1.1, \(\Re(p(z)) > 0 \) and hence
Re \(\left(\frac{I_p(\delta, \lambda, l)f(z)}{I_p(\delta, \lambda, l)g(z)} \right) > \tau \) in \(U \). This proves our theorem.

If we set
\[
v(z) = \frac{I_p(\delta+1, \lambda, l)f(z)}{I_p(\delta+1, \lambda, l)g(z)} + \left(\frac{1}{\alpha} - 1 \right) \frac{I_p(\delta, \lambda, l)f(z)}{I_p(\delta, \lambda, l)g(z)},
\]
then for \(\delta \geq 0, \lambda \geq 0, l \geq 0, \alpha > 0 \) and \(\rho = 0 \), Theorem 2.1 reduces to

\[
(2.6) \quad \text{Re}(v(z)) > 0, z \in U \quad \text{implies} \quad \text{Re} \left(\frac{I_p(\delta, \lambda, l)f(z)}{I_p(\delta, \lambda, l)g(z)} \right) > \frac{\lambda n\alpha \gamma}{2(p+l) + \lambda n\alpha \gamma}, z \in U,
\]
whenever

\[
\text{Re} \left(\frac{I_p(\delta, \lambda, l)g(z)}{I_p(\delta+1, \lambda, l)g(z)} \right) > \gamma, 0 \leq \gamma \leq 1, z \in U. \quad \text{Let} \quad \alpha \to \infty. \quad \text{Then} \quad (2.6) \quad \text{is equivalent to}
\]

\[
\text{Re} \left(\frac{I_p(\delta+1, \lambda, l)f(z)}{I_p(\delta+1, \lambda, l)g(z)} - \frac{I_p(\delta, \lambda, l)f(z)}{I_p(\delta, \lambda, l)g(z)} \right) > 0 \quad \text{in} \quad U
\]
implies

\[
\text{Re} \left(\frac{I_p(\delta, \lambda, l)f(z)}{I_p(\delta, \lambda, l)g(z)} \right) > 1 \quad \text{in} \quad U, \quad \text{whenever} \quad \text{Re} \left(\frac{I_p(\delta, \lambda, l)g(z)}{I_p(\delta+1, \lambda, l)g(z)} \right) > \gamma, 0 \leq \gamma \leq 1, z \in U.
\]

In the following theorem we shall extend the above result, the proof of which is similar to that of Theorem 2.1.

Theorem 2.2. Let \(\delta, \lambda, l \in \mathbb{R}, \delta \geq 0, \lambda \geq 0, l \geq 0, \rho < 1, f(z), g(z) \in A(p, n) \) and
\[
\text{Re} \left(\frac{I_p(\delta, \lambda, l)g(z)}{I_p(\delta+1, \lambda, l)g(z)} \right) > \gamma, 0 \leq \gamma < 1, z \in U. \quad \text{If}
\]
\[
\text{Re} \left(\frac{I_p(\delta+1, \lambda, l)f(z)}{I_p(\delta+1, \lambda, l)g(z)} - \frac{I_p(\delta, \lambda, l)f(z)}{I_p(\delta, \lambda, l)g(z)} \right) > -\frac{\lambda n\gamma(1-\rho)}{2(p+l)}, z \in U,
\]
then
\[
\text{Re} \left(\frac{I_p(\delta, \lambda, l)f(z)}{I_p(\delta, \lambda, l)g(z)} \right) > \rho, z \in U.
\]
In a manner similar to Theorem 2.1, we can easily prove the following theorems:

Theorem 2.3. Let \(\delta, \lambda, l \in R, \delta \geq 0, \lambda \geq 0, l \geq 0, \mu > 0, \rho < 1 \) and \(f(z) \in A(p,n) \). Then for \(\alpha \) a complex number with \(\text{Re}(\alpha) > 0 \), we have
\[
\text{Re}\left(\frac{I_p(\delta, \lambda, l)f(z)}{z^p} \right)^\mu > \frac{2\mu(p + l)\rho + \lambda \text{Re}(\alpha)}{2\mu(p + l) + \lambda n \text{Re}(\alpha)}, z \in U,
\]
whenever
\[
\text{Re}\left\{ (1 - \alpha)\left(\frac{I_p(\delta, \lambda, l)f(z)}{z^p} \right)^\mu + \alpha \left(\frac{I_p(\delta + 1, \lambda, l)f(z)}{I_p(\delta, \lambda, l)f(z)} \right) \right\} > \rho, z \in U.
\]

Theorem 2.4. Let \(\delta, \lambda, l \in R, \delta \geq 0, \lambda \geq 0, l \geq 0, \mu > 0, \alpha \) a complex number with \(\text{Re}(\alpha) > 0 \) and \(\frac{\lambda n \text{Re}(\alpha)}{2\mu(p + l) + \lambda n \text{Re}(\alpha)} \leq \rho < 1 \). If \(f(z) \in A(p,n) \) satisfies the condition
\[
\text{Re}\left(\frac{I_p(\delta + 1, \lambda, l)f(z)}{z^p} \right)^\mu + \alpha \left(\frac{I_p(\delta + 1, \lambda, l)f(z)}{I_p(\delta, \lambda, l)f(z)} \right) \right\} > M(p,n,\alpha,\lambda,l,\mu,\rho),
\]
\((z \in U) \), then
\[
\text{Re}\left(\frac{I_p(\delta, \lambda, l)f(z)}{z^p} \right)^\mu > \rho, z \in U,
\]
where
\[
M(p,n,\alpha,\lambda,l,\mu,\rho) = \rho \left[(2\mu(p + l) + \lambda n \text{Re}(\alpha))\rho - \lambda n \text{Re}(\alpha) \right] / 2\mu(p + l).
\]

\(\rho = \frac{\lambda n \text{Re}(\alpha)}{2\mu(p + l) + \lambda n \text{Re}(\alpha)} \) and \(\rho = \frac{\lambda n \text{Re}(\alpha)}{2[2\mu(p + l) + \lambda n \text{Re}(\alpha)]} \) in Theorem 2.4

yields the following:

Corollary 2.5. Let \(\delta, \lambda, l \in R, \delta \geq 0, \lambda \geq 0, l \geq 0, \mu > 0, \alpha \) a complex number with \(\text{Re}(\alpha) > 0 \) and \(f(z) \in A(p,n) \). Then
\(\text{(a)} \)
\[
\text{Re}\left((1 - \alpha)\left(\frac{I_p(\delta, \lambda, l)f(z)}{z^p} \right)^\mu + \alpha \left(\frac{I_p(\delta + 1, \lambda, l)f(z)}{I_p(\delta, \lambda, l)f(z)} \right) \right\} > 0, z \in U
\]
implies
\[
\text{Re}\left(\frac{I_p(\delta, \lambda, l)f(z)}{z^p} \right)^\mu > \frac{\lambda n \text{Re}(\alpha)}{2\mu(p + l) + \lambda n \text{Re}(\alpha)}, z \in U,
\]
and

\[
\text{Re}\left((1-\alpha) \left(I_\gamma \left(\frac{(\delta, \lambda, l) f(z)}{z^p} \right) \right)^{2\mu} + \alpha \left[I_\gamma \left(\frac{(\delta+1, \lambda, l) f(z)}{I_\gamma (\delta, \lambda, l) f(z)} \right) \right]\right) > M(p, n, \alpha, \lambda, l, \mu), \ z \in U
\]

implies

\[
\text{Re}\left(\left(\frac{I_\gamma (\delta, \lambda, l) f(z)}{z^p} \right)^{\mu} \right) > \frac{\lambda n \text{Re}(\alpha)}{2[(2\mu(p + l) + \lambda n \text{Re}(\alpha))]}, \ z \in U,
\]

where

\[
M(p, n, \alpha, \lambda, l, \mu) = -\frac{\lambda^2 n^2 (\text{Re}(\alpha))^2}{8\mu(p + l)[2\mu(p + l) + \lambda n \text{Re}(\alpha)]}.
\]
Differential subordinations associated with multiplier transformations

Received: September, 2011