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Abstract

In this paper we defined codes over a finitely generated commutative
valuation rings. First we defined field encoding and after that defined
valuation code over valuation rings and discrete valuation code over
discrete valuation rings.
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1 Introduction and preliminaries

Over the last 70 years, algebraic coding has become one of the most important
and widely applied aspect of abstract algebra. Coding theory forms the basis of
modern communication systems and is the key to another area of study, Infor-
mation theory, which lies in the intersection of probability and coding theory.
Algebraic code are now used in essentially all hardware-level implementations
of smart and intelligent machine, such as scanner, optical devices, and telecom
equipment. It is only with algebraic code that we are able to communicate over
long distances or are able achieve megabit bandwidth over a wireless channel.
Algebraic coding is most prevalent in communication system and has been
developed and engineered because of one inescapable fact of communication:
noise. Noise will always be a part of communications and has the potential to
corrupt data and voice due to its presence. Noise, comes from practically an
infinite number of sources, from cosmic background radiation (affecting space
based communication), from an inductive motor in a vending machine down
the hall, and can even be generated by the user, themselves by induced signal
reflections in the environment. The implications of destructive interference in
communication is obvious: mission critical communique, potentially could not
be trusted and decision based on those communications could not be made.
(see [1])
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One can recourse [2, 3, 4], for more information about category algebra coding,
cryptography and their applications.
In this paper we will introduce valuation codes. These codes use valuation
ring and discrete valuation ring.
In Section 2, we start, with a description of basic algebra, definition of a val-
uation ring ,discrete valuation and discrete valuation ring.

In section 3, we will define a code from a field encoding over valuation
ring and present some theorem in this topic. These codes are called valuation
codes.

In section 4, we will define a code from a valuation ring encoding over
discrete valuation and give some theorem. These codes are called discrete
valuation codes.

2 Valuation and Discrete Valuation Rings

In this section we give some basic, necessary definitions and results on valuation
ring. For further details of valuation ring and related algebra, see [5].

Definition 2.1. Let R be an integral domain. R is a valuation ring if every
element x of its field of fraction K satisfies:

x /∈ R ⇒ x−1 ∈ R

Theorem 2.2. Suppose R is a valuation ring. Then, for any two ideal I, J of
R either I ⊂ J or J ⊂ I.

Proof:
Suppose I �⊆ J . Then, there exists x ∈ I such that x /∈ J . Hence, for any
0 �= y ∈ J we have x/y /∈ R. Otherwise, x = y(x/y) ∈ J ; is a contradiction.
So, y/x ∈ R and y = x(y/x) ∈ I. Therefore, J ⊂ I. �

Note that, the set of all ideals of R form a totally order set, by Theorem
2.2. In particular, R has only one maximal ideal. So, R is a local ring.
We denote the unique maximal ideal of R by m. It is easy to verify that,
K�R = {x ∈ K∗|x−1 ∈ m}, where K∗ is the multiplicative group K\{0} (see
[5]). Thus, R is determined by K and m.
If R is valuation ring of field K, then any ring R′ with R ⊂ R′ ⊂ K is obviously
also a valuation ring. (See [5].)

Definition 2.3. Let K be a field, K∗ = K\{0} be the multiplicative group
of K and Z be the set of integer numbers. The extender map ν : K∗ → Z is



Valuation and discrete valuation codes 689

called a discrete valuation of K, if it satisfies the following conditions:
1. ν(xy) = ν(x) + ν(y)
2. ν(x + y) ≥ min{ν(x), ν(y)}
One can show easily the set

∑
= {x ∈ K∗|ν(x) ≥ 0}⋃{0} is a valuation ring

over the field K(See [5]).

Remark 2.4. (i) If we add the condition

ν(x) = ∞ ⇔ x = 0

to conditions of Definition 2.3, we can extend ν from K onto Z. Therefore

Σ = {x ∈ K|ν(x) ≥ 0}

and it is called the valuation ring of ν.
(ii) For each discrete valuation ν, we have ν(1) = ν(1.1) = ν(1) + ν(1). So,
ν(1) = 0.

Definition 2.5. If P is a prime ideal of R, then the length of a chain

P = P0 � P1 � ... � Pn

going down from P , of proper inclusions of prime ideals, is shown by, ht(P ) =
n. The Krull dimension of R, is denoted by K-dim(R), and is defined as
sup(ht(P )), where supermum is taken over all prime ideals of R.

Definition 2.6. Suppose R is an integral domain. Then, R is a discrete
valuation ring, if there exists a discrete valuation ν from quotient field K =
S−1R (S = R�{0}) on to Z (the set of all integers) such that R is the valuation
ring of ν. Hence, R = {x ∈ K : ν(x) ≥ 0}.
Theorem 2.7.([5]) Suppose R is a discrete evaluation ring with discrete eval-
uation ν of its quotient field K = S−1R (S = R\{0}) on to Z. Then :
1. R is a local ring with maximal ideal m = {x ∈ K|ν(x) > 0}.
2. If x, y ∈ R and ν(x) = ν(y), then the ideal generated by x and the ideal
generated by y are equal, i.e., < x >=< y >.
3. If I is a non-zero ideal of R, then there exists an integer k and x ∈ I such
that ν(x) = k. Thus, y ∈ R and ν(y) ≥ k implies y ∈ I, i.e., I = {y ∈
R|ν(y) ≥ k}.
4. There exists x ∈ m such that ν(x) = 1 , m =< x > and if mk = {y ∈
R|ν(y) ≥ k} then mk =< xk > for some k ≥ 1.
5. m is the unique non-zero prime ideal of R.

Theorem 2.8. Let R be a discrete valuation ring. For ever x ∈ R , ν(x) = 0
if and only if x is unit in R.



690 M. Hosseinyazdi and A. Ashour

Proof:
Suppose ν(x) = 0. Thus, x /∈ m ( m = {x ∈ K|ν(x) > 0}). Hence, x ∈ R�m
, by Theorem 2.8. Since R is a local ring, x is unit in R.
Conversely, suppose x is unit in R, then x, x−1 ∈ R. We know ν(1) = ν(1.1) =
ν(1) + ν(1) Thus ν(1) = 0. Now, ν(1) = ν(xx−1) = ν(x) + ν(x−1) = 0. Then,
ν(x) = −ν(x−1). As, x, x−1 ∈ R, ν(x) = ν(x−1) = 0. �
Theorem 2.9.([5]) Suppose R is a local integral domain with dimR = 1 .
Also, let m be the maximal ideal of R and K = R/m be the quotient field of
R. Then, the following conditions are equivalent:
1. R is integrally closed.
2. R is a PDI.
3. R is discrete valuation ring.

3 Valuation Codes

In this section we defined valuation codes over finitely generated valuation
ring.
Suppose R generated by S = {r1, ..., rn}. Then, for each r ∈ R there exists
ai ∈ R (1 ≤ i ≤ n) such that r =

∑n
i=1 airi. Now, we define r := (a1, ..., an).

Definition 3.1. Let R be a valuation ring, generated by S = {r1, ..., rn},
K = S−1R, (S = R�{0}). Also, let A be a subset of K and r ∈ K be given.
A ” field encoding” is mapping fr : A → K such that fr(x) = rx.

A code ζ is the image of a field encoding; i.e, for a given r ∈ K, ζr =
{fr(x)|x ∈ A}. Suppose R is valuation ring, then R is integral domain and
S = R�{0}. Therefore S−1R includes R.
Let R be a finitely generated valuation ring and A = R in Definition 3.1. Then,

ζr = {rx|x ∈ R}

Also, we can consider A as an ideal of R. Thus, ζr = {rx|x ∈ I}.

Theorem 3.2. Suppose R is a finitely generated valuation ring , I is an ideal
of R , A = I in Definition 3.1 and ζr = {rx|x ∈ I}. Then ζr is an ideal of R.

proof:
Note that, for all t1, t2 ∈ ζr there exist x1, x2 ∈ I such that t1 = rx1 and
t2 = rx2. Hence, t1 + t2 = rx1 + rx2 = r(x1 + x2) and I � R, we have
t1 + t2 ∈ ζr

Also, for all t ∈ ζr and s ∈ R there exists x ∈ I such that t = rx. Hence,
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st = srx = rsx and sx ∈ I implies st ∈ ζr. So, ζr is an ideal of R. �

Theorem 3.3. Suppose R is a finitely generated valuation ring , I and J are
two ideals of R, ζ1r = {rx|x ∈ I} and ζ2r = {rx|x ∈ J}. Then ζ1r ⊂ ζ2r or
ζ2r ⊂ ζ1r .

proof:
Suppose I, J are two ideals of R. Then, ζ1r , ζ2r are two ideal of R, by Theorem
3.2. Hence, ζ1r ⊂ ζ2r or ζ2r ⊂ ζ1r , by Theorem 2.2. �

Definition 3.4. Let R be a valuation ring, P be a prime ideal of R and A = P
in Definition 3.1. Then ζr = {rx|x ∈ P} is called prime code.

Definition 3.5. Let R be a ring and I be an ideal of R. The radical of I is
denoted by r(I) or

√
I, and defined as follows:

r(I) =
√

I = {a ∈ R|an ∈ I for some n > 0}
Note that, r(I) is an ideal of R.

Theorem 3.6. Suppose R is a finitely generated valuation ring and I is proper
ideal of R. Then ζr = {rx|x ∈ r(I)} is a prime code, where r(I) is the radical
of I.

proof:
Suppose, I is a proper ideal of R. For all ab ∈ r(I), there exists n ∈ N

such that anbn ∈ I. We have Ra ⊆ Rb or Rb ⊆ Ra. If Ra ⊆ Rb then
b2n ∈ RbnRbn ⊆ RanRbn = Ranbn. Thus, b ∈ r(I). If Rb ⊆ Ra then, in the
same way, a ∈ r(I). Therefore, r(I) is prime ideal of R. Hence ζr is a prime
code. �

4 Discrete Valuation Codes

In this section we define discrete valuation code, when A = Σ in Definition
3.1, ζr = {rx|x ∈ Σ} is discrete valuation code. ( Σ as Definition 2.3).

Theorem 4.1. If ζr is a discrete valuation code then, ζr = {rx|ν(x) ≥ 0}.
Proof:
We know Σ = {x ∈ K|ν(x) ≥ 0}. Clearly, ζr = {rx|ν(x) ≥ 0}. �

Theorem 4.2. Suppose ν(x) = ν(y). Then we have:

{fr(z)|z ∈< x >} = {fr(z)|z ∈< y >}
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Proof:

It is clear by Theorem 2.7(2). �
Theorem 4.3. Suppose m is a maximal ideal of Σ. If A = m in Definition

3.1 and ζr = {rx|x ∈ m} is prime a code then, ζr = {rz|ν(z) ≥ 1}.
Proof:
It is sufficient to show m =< x >= {y ∈ Σ|ν(y) ≥ 1}. Let m′ = {y ∈

Σ|ν(y) ≥ 1}. Now, we show m′ =< x >.
For each y ∈< x >, there exists t ∈ Σ such that, y = tx ∈ m. Thus,
ν(tx) = ν(t) + ν(x) ≥ 1. Then, < x >⊆ m′. On the other hands, for each
y ∈ m′ there exists k such that, ν(y) = k ≥ 1. Also, we know that, ν(xk) = k.
Then, < y >=< xk >. Therefore, there exists s ∈ Σ such that y = sxk which
implies y ∈< x >. So, m′ =< x >. Now, it is clear that ζ = {rz|ν(z) ≥ 1}.�

Theorem 4.4. Let mk be the ideal of Σ as in Theorem 2.7(4) and ζr = {ry|y ∈
mk}. Then, there exist x ∈ Σ and k ∈ Z such that ζr = {ry|y ∈< xk >} =
{ry|ν(y) ≥ k}.
Proof:
It is clear by Theorem 2.7(4). �
Theorem 4.5. Suppose R is a valuation ring of its field of fractions K and

ζr = {rx|x ∈ K}. Then, ζr = {rx|x ∈ R}⋃{rx|x ∈ R−1}.
Proof:
If we consider R−1 as the set of inverses of all non-zero elements of R, then

R
⋃

R−1 = K. (See [5]). Therefore, ζr = {rx|x ∈ R}⋃{rx|x ∈ R−1}.�
Corollary 4.6. Suppose R is an integral domain , K = S−1R (S = R�{0})
and Σ the valuation ring of ν. Then, ζr = {rx|x ∈ Σ}⋃{rx|x−1 ∈ Σ}.
Proof:
It is clear by Theorem 4.5. �
Theorem 4.7. Let ζr = {rx|x ∈ Σ} and ζ−1

r = {rx|x−1 ∈ Σ}. Then

ζr

⋂
ζ−1
r = {rx|x is unit}

Proof:
For all t ∈ ζr

⋂
ζ−1
r there exist x ∈ Σ and y ∈ Σ such that t = rx and t = ry−1.

Thus, rx = ry−1 which implies ν(rx) = ν(ry−1). Hence, ν(r) + ν(x) = ν(r) +
ν(y−1). Therefore, ν(x) = ν(y−1). Then, 0= ν(x) − ν(y−1) = ν(x) + ν(y) =
ν(xy). Thus, by Theorem 2.8, xy is unit. Then x and y are units. �
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Corollary 4.8. Let ζr = {rx|x ∈ Σ} and ζ−1
r = {rx|x−1 ∈ Σ}. Then

ζr

⋂
ζ−1
r = {rx|ν(x) = 0}.

Theorem 4.9. If ν is a discrete valuation of field K and α1, ..., αn ∈ K such
that α1 + ... + αn = 0 then, there exist two indices i, j such that i �= j and
ζi = ζj where, ζi = {rx|x ∈< αi >}, ζj = {rx|x ∈< αj >}.
Proof:
It is sufficient, to show there exist indices i and j such that i �= j and ν(αi) =
ν(αj). Suppose, for each i, j, ν(αi) �= ν(αj). Let ν(αj) = min{ν(α1), ..., ν(αn)}.
For each i �= j; if ν(αi) �= ν(αj) then, ν(αi + αj) = min{ν(αi), ν(αj)}. (see
[5]). Hence,

ν(0) = ν(α1 + ... + αn) = min{ν(α1), ..., ν(αn)} = ν(αj)

Thus, ∞ = ν(αj). Then, ν(α1) = ... = ν(αn) = ν(αj). It is contradiction
with ν(αi) �= ν(αj). Then, there exist indices i and j such that i �= j and
ν(αi) = ν(αj). Now it follows by Theorem 4.2.�

5 Conclusion

In this paper we investigate each code from an ideal of discrete valuation ring
R, is generated by xk ∈ R such that ν(x) = 1, k ∈ Z. Therefore, these codes
can use in cyclic codes such as BCH, Hamming and Reed-Solomon. By this
method, we can consider, the code ζ = {rx|ν(x) ≥ k}, for each k ∈ Z. This
code, is generated by xk such that ν(x) = 1 and we can generate equivalent
codes by this method.
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