An Integral Representation of Some k-Hypergeometric Functions

S. Mubeen
National College of Business Administration and Economics
Gulberg-III, Lahore, Pakistan
smjhanda@gmail.com

G. M. Habibullah
National College of Business Administration and Economics
Gulberg-III, Lahore, Pakistan

Abstract
In this paper, we introduce a new and simple integral representation of some k-confluent hypergeometric functions and k-hypergeometric functions.

Mathematics Subject Classification: 33C20, 33C15, 33B15, 33D60

Keywords: Hypergeometric Functions, Confluent Hypergeometric Functions, Pochhammer Symbol, Gamma Function, Beta Function, Integral Representations

1 Introduction
Diaz and Pariguan [1] have introduced and proved some identities of k-gamma function, k-beta function and k-Pochhammer symbol. They have deduced an integral representation of k-gamma function, k-beta function respectively given by

$$\Gamma_k(x) = k^x \Gamma\left(\frac{x}{k}\right) = \int_0^\infty t^{x-1} e^{-t} dt, \quad \text{Re}(x) > 0, \quad k > 0 \tag{1.1}$$

and

$$B_k(x, y) = \frac{1}{k} \int_0^1 t^{x-1} (1-t)^{y-1} dt, \quad x > 0, \quad y > 0. \tag{1.2}$$
They have also provided some useful and applicable relations

\[B_k(x, y) = \frac{\Gamma_k(x)\Gamma_k(y)}{\Gamma_k(x+y)}, \quad (1.3) \]

\[(x)_{j,k} = \frac{\Gamma_k(x+jk)}{\Gamma_k(x)}; \quad (1.4) \]

where \((x)_{j,k} = x(x+k)(x+2k)...(x+(j-1)k)\), is the \(k\)-Pochhammer symbol

and \(\sum_{j=0}^{\infty} (\alpha)_{j,k} \frac{x^j}{j!} = (1-kx)^{-\frac{\alpha}{k}}. \quad (1.5)\)

Recently, Mansour [5] and Kokologiannaki [4] have proved a number of properties and Kokologiannaki has also taken up \(k\)-Zeta function

\[\zeta(x,s) = \sum_{j=0}^{\infty} \frac{1}{(x+jk)^s}, k, x > 0, s > 1. \quad (1.6) \]

The main purpose of this paper is to introduce an integral representation of some \(k\)-confluent hypergeometric functions and \(k\)-hypergeometric functions so that we can get the usual integral representations discussed in [2, 3], by taking \(k \to 1\). We shall use later the following basic results.

\[m^{mj}\left(\frac{x}{m}\right)_{j,k} \left(\frac{x+jk}{m}\right)_{j,k} \cdots \left(\frac{x+(m-1)k}{m}\right)_{j,k} = (x)_{m,j,k}; \quad (1.7) \]

\[(x)_{mj,k} = \frac{\Gamma_k(x+mjk)}{\Gamma_k(x)}; \quad (1.8) \]

\[\sum_{j=0}^{\infty} \frac{x^j}{j!} = e^x. \quad (1.9) \]

2 Integral Representation of Some \(k\)-Confluent Hypergeometric Functions

In this section, we determine integral representations of some \(k\)-confluent hypergeometric functions \(mF_{m,k}\).

Theorem 2.1:

If \(\text{Re}(\gamma) > \text{Re}(\beta) > 0\), \(k > 0\), \(m \geq 1\), \(m \in \mathbb{Z}^+\), then for all finite \(x\)

\[mF_{m,k}\left(\frac{\beta}{m},k;\frac{\beta+k}{m},k;\ldots;\frac{\gamma+(m-1)k}{m},k;\right) = x \]

\[\left(\frac{\gamma}{m},k,\frac{\gamma+k}{m},k,\ldots;\frac{\gamma+(m-1)k}{m},k;\right) \]
\[k - \text{hypergeometric functions} \]

\[\int_0^1 t^{k-1} (1-t)^{\frac{p-\beta-1}{k}} e^{xt} \text{ } dt. \quad (2.1) \]

Proof: First note that for any positive integer \(j \), we get

\[
\frac{(\beta)_{mj,k}}{(\gamma)_{mj,k}} = \frac{\Gamma_k(\gamma) \Gamma_k(\beta + mj_k)}{\Gamma_k(\beta) \Gamma_k(\gamma + mj_k)} = \frac{\Gamma_k(\gamma)}{\Gamma_k(\beta) \Gamma_k(\gamma - \beta)} B_k(\beta + mj_k, \gamma - \beta)
\]

\[
= \frac{\Gamma_k(\gamma)}{k \Gamma_k(\beta) \Gamma_k(\gamma - \beta)} \int_0^1 t^{\frac{p+mj-1}{k}} (1-t)^{\frac{p-\beta-1}{k}} \text{ } dt. \quad (2.2)
\]

Now, using Equations (1.7), (1.9) and (2.2), we get

\[
m_{F_{m,k}} \left(\left(\frac{\beta}{m}, k \right), \left(\frac{\beta+k}{m}, k \right), \ldots, \left(\frac{\gamma+(m-1)k}{m}, k \right) \right) = \sum_{j=0}^{\infty} \frac{(\beta)_{mj,k} x^j}{j!} = \frac{\Gamma_k(\gamma)}{k \Gamma_k(\beta) \Gamma_k(\gamma - \beta)} \int_0^1 t^{\frac{p-1}{k}} (1-t)^{\frac{p-\beta-1}{k}} e^{xt} \text{ } dt.
\]

Corollary 2.2:

If \(\text{Re}(\gamma) > \text{Re}(\beta) > 0 \), then for all finite \(x \)

\[
1 F{1,k} \left((\beta,k);(\gamma,k);x \right) = \frac{\Gamma_k(\gamma)}{k \Gamma_k(\beta) \Gamma_k(\gamma - \beta)} \int_0^1 t^{\frac{p-1}{k}} (1-t)^{\frac{p-\beta-1}{k}} e^{xt} \text{ } dt. \quad (2.3)
\]
3 Integral Representation of Some k-Hypergeometric Functions

In this section, we determine integral representations of some k-hypergeometric functions.

Theorem 3.1:

If $\Re(\gamma) > \Re(\beta) > 0$, $k > 0$, $m \geq 1$, $m \in \mathbb{Z}^+$ and $|x| < 1$, then

$$
\begin{aligned}
F_{m,k}^{m+1} & \left(\begin{array}{c}
(\alpha, k), \left(\frac{\beta}{m}, k \right), \left(\frac{\beta+k}{m}, k \right), \ldots, \left(\frac{\gamma+(m-1)k}{m}, k \right) \\
(\frac{\gamma}{m}, k), \left(\frac{\gamma+k}{m}, k \right), \ldots, \left(\frac{\gamma+(m-1)k}{m}, k \right)
\end{array} \right) ; x \\
\end{aligned}
= \frac{\Gamma_k(\gamma)}{k \Gamma_k(\beta) \Gamma_k(\gamma - \beta)} \int_0^1 \frac{t^{\beta-1}}{1-t} \left(\frac{\gamma - \beta}{k} \right) \left(1 - kxt^m \right)^{-\frac{\alpha}{k}} dt.
$$

(3.1)

Proof: First note that for any positive integer j, we have

$$
\frac{(\beta)_{mj,k}}{(\gamma)_{mj,k}} = \frac{\Gamma_k(\gamma) \Gamma_k(\beta + mjk)}{\Gamma_k(\beta) \Gamma_k(\gamma + mjk)}
= \frac{\Gamma_k(\gamma)}{\Gamma_k(\beta) \Gamma_k(\gamma - \beta)} B_k(\beta + mjk, \gamma - \beta)
= \frac{\Gamma_k(\gamma)}{k \Gamma_k(\beta) \Gamma_k(\gamma - \beta)} \int_0^{\beta + mj - 1} (1 - t)^{\gamma - \beta - 1} dt.
$$

(3.2)

Using Equations (1.7), (3.2) and (1.5), we get

$$
\begin{aligned}
F_{m,k}^{m+1} & \left(\begin{array}{c}
(\alpha, k), \left(\frac{\beta}{m}, k \right), \left(\frac{\beta+k}{m}, k \right), \ldots, \left(\frac{\gamma+(m-1)k}{m}, k \right) \\
(\frac{\gamma}{m}, k), \left(\frac{\gamma+k}{m}, k \right), \ldots, \left(\frac{\gamma+(m-1)k}{m}, k \right)
\end{array} \right) ; x \\
= \sum_{j=0}^{\infty} \frac{(\alpha)_{j,k} (\beta)_{mj,k}}{(\gamma)_{mj,k}} \frac{x^j}{j!}
\end{aligned}
$$

$$
= \sum_{j=0}^{\infty} \frac{(\alpha)_{j,k} (\beta)_{mj,k}}{(\gamma)_{mj,k}} \frac{x^j}{j!}
$$
\[k - \text{hypergeometric functions} \quad 207 \]

\[\frac{\Gamma_k\left(\gamma\right)}{k \Gamma_k\left(\beta\right) \Gamma_k\left(\gamma - \beta\right)} \int_0^1 t^{k-1} \left(1 - t\right)^{-\frac{\beta}{k}} \left(1 - kxt^m\right)^{-\frac{a}{x}} \, dt. \]

Corollary 3.1:

If \(\text{Re}(\gamma) > \text{Re}(\beta) > 0 \) and \(|x| < 1 \), then

\[_2 F_{1,k} \left((\alpha, k), (\beta, k); (\gamma, k); x \right) \]

\[= \frac{\Gamma_k\left(\gamma\right)}{k \Gamma_k\left(\beta\right) \Gamma_k\left(\gamma - \beta\right)} \int_0^1 t^{k-1} \left(1 - t\right)^{-\frac{\beta}{k}} \left(1 - kxt^m\right)^{-\frac{a}{x}} \, dt. \quad (3.3) \]

References

Received: June, 2011