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Abstract. We consider diffusion processes xt on the unit interval. Doob-
transformation techniques consist of a selection of xt−paths procedure. The
law of the transformed process is the one of a branching diffusion system of
particles, each diffusing like a new process x̃t, superposing an additional drift
to the one of xt. Killing and/or branching of x̃t−particles occur at some space-
dependent rate λ. For this transformed process, so in the class of branching
diffusions, the question arises as to whether the particle system is sub-critical,
critical or super-critical. In the first two cases, extinction occurs with proba-
bility one.

We apply this circle of ideas to diffusion processes arising in population
genetics. In this setup, the process xt is a Wright-Fisher (WF) diffusion,
either neutral or with mutations.

We study a particular Doob transform which is based on the exponential
function in the usual fitness parameter σ. We have in mind that this is an
alternative way to introduce selection or fitness in both WF-like diffusions,
leading to branching diffusion models ideas. For this Doob-transform model
of fitness, the usual selection drift σx (1 − x) should be superposed to the one
of xt to form x̃t which is the process that can branch, binarily.

In the first neutral case, there is a trade-off between branching events giving
birth to new particles and absorption at the boundaries, killing the particles.
Under our assumptions, the branching diffusion process gets eventually glob-
ally extinct in finite time with exponential tails.

In the second case with mutations, there is a trade-off between killing events
removing some particles from the system and reflection at the boundaries where
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the particles survive. This branching diffusion process also gets eventually
globally extinct but in very long finite time with power-law tails.

Our approach relies on the spectral expansion of the transition probability
kernels of both xt and x̃t.

PACS: 87.23.Cc, 02.50.Ey, 87.23

Keywords: Diffusions, Doob transform, killing, branching, quasi-stationarity,
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1. Introduction

We consider diffusion processes on the unit interval with in mind a series of
elementary stochastic models arising chiefly in population dynamics. Special
emphasis is put on Doob-transformation techniques of the diffusion processes
under concern.

Most of the manuscript’s content focuses on the specific Wright-Fisher (WF)
diffusion model and some of its variations, describing the evolution of one two-
locus colony undergoing random mating, possibly under the additional actions
of mutation and selection. These models found their way over the last sixty
years, chiefly in mathematical population genetics. We refer to the general
monographs [3], [21], [8], [5] and [9].

We now describe the content of this work in some more details.

Section 2 is devoted to generalities on one-dimensional diffusions on the
unit interval [0, 1], say (xt; t ≥ 0). Special emphasis is put on the Kolmogorov
backward and forward equations, while stressing the crucial role played by the
boundaries in such one-dimensional diffusion problems. Some questions such
as the meaning of speed and scale functions, existence of an invariant measure,
random time change... are addressed in the light of the Feller classification of
boundaries. When the boundaries are absorbing, the important problem of
evaluating additive functionals α along sample paths is then briefly discussed,
emphasizing the prominent role played by the Green function of the model.

So far, we have dealt with a given diffusion process xt, and recalled the
various ingredients for computing the expectations of various quantities of
interest, summing up over the history of its paths. In this setup, there is
no distinction among paths with different destinations, nor did we allow for
annihilation or creation of paths inside the domain. The Doob transform of
paths is an invitation to do so. This important class of transformations is
a particular instance of a more general construction based on multiplicative
functionals. We fix the background.
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Roughly speaking, the Doob transformation of paths procedure allows to
select sample paths x → y within any laps of time t, favoring large values of
the ratio α (y) /α (x) for some specific functional α > 0 that fixes the selection
problem under study. The process solving this selection of paths procedure
belongs to a class of branching diffusion processes, where independent particles
diffusing like a new process x̃t inside the interval are allowed to duplicate would
the visited region of the state-space fulfill the selection of paths criterion or
to die, if not. In the process, advantageous regions of the state-space are
reinforced while unfavorable ones are left unexplored which is a reasonable
physical way to look at selection of paths. The new process x̃t alluded to is
obtained from xt just after superposing an additional suitable drift to the latter
process. An important parameter is the state-dependent rate λ at which killing
and/or branching occur. Depending on λ and on the type of boundaries which
{0, 1} are to x̃t, the full transformed process can have two stopping times: the
time to absorption at the boundaries and the killing time inside the domain.
Besides, there is or not an opportunity that the x̃t−particles duplicate, leading
or not to a daughters particle system evolving independently starting from
where their mother particle died. The killing/branching issues depend on the
sign of λ.

It turns out that the same diffusion methods used in the previous discussion
on simple diffusions apply to the transformed processes obtained after the
induced change of measure. We develop this circle of ideas.

We next apply these general ideas to diffusion processes arising in population
genetics.

In Section 3 we start recalling that WF diffusion models with various drifts
are continuous space-time models which can be obtained as scaling limits of a
biased discrete Galton-Watson model with a conservative number of offsprings
over the generations. Sections 4 and 5 are devoted to a detailed study of both
the neutral WF diffusion process (WFN), the WF diffusion with selection
(WFS), the WF diffusion with mutations (WFM) and the WF diffusion with
mutations and selection (WFMS) respectively.

In this context, our suggestion is the following one: we can view the action of
selection (or fitness) on the evolution of the allele frequency distribution, either
neutral or with mutations, as a functional deformation of the sample paths of
the original process, say xt, favoring initial values x0 = x with small α (x) and
terminal values xt = y with large α (y) , for each t. In our construction, α (x) =
eσx, σ > 0, is the chosen exponential fitness functional. Stated differently and
more precisely, if p (x; t, y) is the transition probability density of xt (either
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WFN or WFM), our model of the action of fitness is

p (x; t, y)
fitness→ p (x; t, y) =

eσy

eσx
p (x; t, y) .

With this choice of α, the modification consists of selecting those paths x→ y
of xt for which eσ(y−x) is large. As a result of this transformation of paths, the
usual positive selection drift σx (1 − x) has to be superposed to the one of xt
to form the new process x̃t, but our functional definition of fitness also gen-
erates an additional branching multiplicative term, translating that a particle
system pops in: The resulting transformed process is a (binary) branching dif-
fusion of WF diffusions x̃t. We may call the obtained processes the branching
neutral Wright-Fisher process and the branching Wright-Fisher process with
mutations. This point of view seems to be new, to the best of the author’s
knowledge.

Because the spectral representation of both transition probability densities
of WFN or WFM are known explicitly from the works of Crow and Kimura
(see [14], [3] and [4]), some easy consequences on the spectral structures of the
branching transformed processes are available. For instance, it is possible to
decide whether the BD process is sub-critical, critical or super-critical in the
sense of ([1] and [2]).

In Section 6, we therefore give a detailed study of the binary branching
diffusion process obtained while using the Doob transform α (x) = eσx when
the starting point process is a WFN diffusion process. We end up with a
branching particle system, each diffusing according to the WF model with a
selection drift, but branching at a bounded rate b > 0. In this setup, the
particles cannot get killed, rather they are allowed either to survive or to
split: the transformed process is a pure binary branching diffusion. For this
super-critical binary branching diffusion process, there is a trade-off between
branching events giving birth to new particles and absorption at the bound-
aries, killing the particles. Thanks to the spectral representation of the WFN
process, this problem is amenable to the results obtained in ([1] and [2]). Un-
der our assumptions, the branching diffusion process turns out to be globally
sub-critical: the branching diffusion process gets eventually globally extinct in
finite exponential time. This requires the computation of the ground states as-
sociated with the smallest nonnegative eigenvalue of the infinitesimal generator
of the transformed process which are here shown to be explicit. In particular,
the expression of the quasi-stationary distribution of the particle system can
be obtained in closed-form.

In Section 7, we study the binary branching diffusion process obtained while
using the same Doob transform, when the starting point process is now a WF
diffusion process with mutations, assuming reflecting boundaries. We end up
in a branching particle system, each diffusing according to the WF model with
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a mutation and selection drift, but branching at quadratic rate λ, which is
bounded from below and above. Although the particles are still allowed to
split, they can now also get killed at the branching times: the transformed
process is again a binary branching diffusion but with killing now allowed.
In this setup, there is a competition between branching/ killing events and
reflection at the boundaries where the particles survive. This problem is also
amenable to the results obtained in ([1] and [2]) and we end up now in a
globally critical branching particle system, each diffusing according to the WF
model with a mutation and selection drift. This branching diffusion process
turns out to be globally critical: it also gets eventually globally extinct but
now in long finite time, with power-law tails.

2. Diffusion processes on the unit interval and Doob

transforms

We start with generalities on one-dimensional diffusions with the WF model
and its relatives in mind. For more technical details, we refer to [6], [7], [13]
and [19]. We also introduce Doob transforms as particular instances of the
modification of the original diffusion process through a multiplicative func-
tional.

2.1. One-dimensional diffusions on the interval [0, 1]. Let (wt; t ≥ 0)
be a standard one-dimensional Brownian (Wiener) motion. We consider a
1−dimensional Itô diffusion driven by (wt; t ≥ 0) on the interval say [0, 1], see
[11]. We assume it has locally Lipschitz continuous drift f (x) and local stan-
dard deviation (volatility) g (x), namely we consider the stochastic differential
equation (SDE):

dxt = f (xt) dt+ g (xt) dwt, x0 = x ∈ I := (0, 1) .(1)

The condition on f (x) and g (x) guarantees in particular that there is no point
x∗ in I for which |f (x)| or |g (x)| would blow up and diverge as |x− x∗| → 0.

The Kolmogorov backward infinitesimal generator of (1) is G = f (x) ∂x +
1
2
g2 (x) ∂2

x. As a result, for all suitable ψ in the domain of the operator St :=
etG, u := u (x, t) = Eψ (xt∧τx) satisfies the Kolmogorov backward equation
(KBE)

∂tu = G (u) ; u (x, 0) = ψ (x) .

In the definition of the mathematical expectation u, we have t∧τx := inf (t, τx)
where τx indicates a random time at which the process should possibly be
stopped (absorbed), given the process was started in x. The description of
this (adapted) absorption time is governed by the type of boundaries which
∂I := {0, 1} are to (xt; t ≥ 0) . A classification of the boundaries exists, due to
Feller (see [13] pp. 226): they can be either accessible (namely exit or regular),
or inaccessible (namely entrance or natural).
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2.2. Natural coordinate, scale, speed measure, time change. For such
Markovian diffusions, it is interesting to consider the G−harmonic coordinate
ϕ ∈ C2 belonging to the kernel of G, i.e. satisfying G (ϕ) = 0. For ϕ and its
derivative ϕ′ := dϕ/dy, with (x0, y0) ∈ (0, 1), one finds

ϕ′ (y) = ϕ′ (y0) e
−2

� y
y0

f(z)

g2(z)
dz

ϕ (x) = ϕ (x0) + ϕ′ (y0)

∫ x

x0

e
−2

� y
y0

f(z)

g2(z)
dz
dy.

One should choose a version of ϕ satisfying ϕ′ (y) > 0, y ∈ I. The function
ϕ kills the drift f of (xt; t ≥ 0) in the sense that, considering the change of
variable yt = ϕ (xt) ,

dyt = (ϕ′g)
(
ϕ−1 (yt)

)
dwt, y0 = ϕ (x) .

The drift-less diffusion (yt; t ≥ 0) is often termed the diffusion in natural co-
ordinates with state-space [ϕ (0) , ϕ (1)] =: ϕ (I). Its volatility is g̃ (y) :=
(ϕ′g) (ϕ−1 (y)) . The function ϕ is often called the scale function.

Whenever ϕ (0) > −∞ and ϕ (1) < +∞, one can choose the integration
constants defining ϕ (x) so that

ϕ (x) =

∫ x
0
e
−2

� y
0

f(z)

g2(z)
dz
dy∫ 1

0
e
−2

� y
0

f(z)

g2(z)
dz
dy
,

with ϕ (0) = 0 and ϕ (1) = 1. In this case, the state-space of (yt; t ≥ 0) is again
[0, 1] , the same as for (xt; t ≥ 0) .

Finally, considering the random time change t → θt with inverse: θ → tθ
defined by θtθ = θ and

θ =

∫ tθ

0

g̃2 (ys) ds,

the novel diffusion (wθ := ytθ ; θ ≥ 0) is easily checked to be identical in law to
a standard Brownian motion on ϕ (I). The random time tθ can be expressed
as

tθ =

∫ θ

0

m
(
ϕ−1 (wτ )

) (
ϕ−1

)′
(wτ ) dτ

where m (x) := 1/ (g2ϕ′) (x) is the (positive) speed density at x = ϕ−1 (y).
Both the scale function ϕ and the speed measure dμ = m (x) · dx are therefore
essential ingredients to reduce the original stochastic process (xt; t ≥ 0) to the
standard Brownian motion (wθ; θ ≥ 0). The Kolmogorov backward infinitesi-
mal generator G may then be written in Feller form

G (·) =
1

2

d

dμ

(
d

dϕ
·
)
.
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Examples (from population genetics):
• Assume f (x) = 0 and g2 (x) = x (1 − x). This is the neutral WF model

discussed at length later. This diffusion is already in natural scale and ϕ (x) =

x, m (x) = [x (1 − x)]−1 . The speed measure is not integrable.
• With π1, π2 > 0, assume f (x) = π1 − (π1 + π2)x and g2 (x) = x (1 − x).

This is the WF model with mutation. The parameters π1, π2 can be interpreted
as mutation rates. The drift vanishes when x = π1/π (where π := π1 + π2

is the total mutation pressure) which is an attracting point for the dynamics.
Here:
ϕ′ (y) = ϕ′ (y0) y

−2π1 (1 − y)−2π2 , ϕ (x) = ϕ (x0)+ϕ
′ (y0)

∫ x
x0
y−2π1 (1 − y)−2π2 dy,

with ϕ (0) = −∞ and ϕ (1) = +∞ if π1, π2 > 1/2. The speed measure density
is m (x) ∝ x2π1−1 (1 − x)2π2−1 and so is always integrable. After normalization
to 1, m (x) is the beta(2π1, 2π2) density.

• With σ ∈ R, assume a model with quadratic logistic drift f (x) = σx (1 − x)
and local variance g2 (x) = x (1 − x). This is the WF model with selec-

tion or selection. For this diffusion (see [16]), ϕ (x) = 1−e−2σx

1−e−2σ and m (x) ∝
[x (1 − x)]−1 e2σx is not integrable. Here, σ is a selection or fitness parameter.

Time change and subordination. We start from the diffusion (1) with
infinitesimal generator G = f∂x+ 1

2
g2∂2

x and consider the time change problem
without passing first in natural coordinate. Let the random time change

t→ θt =

∫ t

0

g2 (xs) ds.

Its inverse: θ → tθ defined by θtθ = θ is given by θ =
∫ tθ
0
g2 (xs) ds.

In this new stochastic time clock, the subordinated diffusion (yθ := xtθ ; θ ≥ 0)

obeys the Langevin SDE with potential U (y) := −2
∫ y
0

f(z)
g2(z)

dz

dyθ =
f

g2
(yθ) dθ + dwθ,

with backward infinitesimal generator G̃ = g−2G = f
g2
∂x + 1

2
∂2
x (See [12], pp.

164-169).

We have
·
θt = g2 (xt) meaning that at each point xt of the former motion,

the motion of the path is accelerated or decelerated, depending on the rate

g2 (xt) ≶ 1. Note that conversely
·
tθ = 1/g2 (yθ) . Under the time substitutions,

the road maps of the paths of both (xt; t ≥ 0) and (yθ; θ ≥ 0) remain exactly
the same. If a path of the former process is accelerated or decelerated by its
squared volatility g2 (its local variance) at each locality, then this process boils
down to the latter one. Stated differently, if we measure time by the amount of
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squared volatility accumulated within each of its path, the process (xt; t ≥ 0)
becomes (yθ; θ ≥ 0), both with state-space I.

2.3. The transition probability density. Assume that f (x) and g (x) are
now differentiable in I. Let then p (x; t, y) stand for the transition probability
density function of xt at y given x0 = x. Then p := p (x; t, y) is the smallest
solution to the Kolmogorov forward (Fokker-Planck) equation (KFE):

∂tp = G∗ (p) , p (x; 0, y) = δy (x)(2)

where G∗ (·) = −∂y (f (y) ·) + 1
2
∂2
y (g2 (y) ·) is the adjoint of G (G∗ acts on the

terminal value y whereas G acts on the initial value x). The way one can view
this partial differential equation (PDE) depends on the type of boundaries that
{0, 1} are.

Suppose for example that the boundaries ◦ := 0 or 1 are both exit (or
absorbing) boundaries. From the Feller classification of boundaries, this will
be the case if ∀y0 ∈ (0, 1):

(i) m (y) /∈ L1 (y0, ◦) and (ii) ϕ′ (y)
∫ y

y0

m (z) dz ∈ L1 (y0, ◦) ,(3)

where a function f (y) ∈ L1 (y0, ◦) if
∫ ◦
y0
|f (y)| dy < +∞.

In this case, a sample path of (xt; t ≥ 0) can reach ◦ from the inside of I in
finite time but cannot reenter. The sample paths are absorbed at ◦. There is an
absorption at ◦ at time τx,◦ = inf (t > 0 : xt = ◦ | x0 = x) and P (τx,◦ <∞) =
1. Whenever both boundaries {0, 1} are absorbing, the diffusion xt should be
stopped at τx := τx,0∧τx,1. Would none of the boundaries {0, 1} be absorbing,
then τx = +∞. This occurs when the boundaries are inaccessible.

Examples of diffusion with exit boundaries are the WF model and the WF
model with selection. In the WF model including mutations, the boundaries
are entrance boundaries and so are not absorbing.

When the boundaries are absorbing, then p (x; t, y) is a sub-probability. Let-

ting ρt (x) :=
∫ 1

0
p (x; t, y) dy, we clearly have ρt (x) = P (τx > t). Such models

are non-conservative.
For one-dimensional diffusions, the transition density p (x; t, y) is reversible

with respect to the speed density ([13], Chapter 15, Section 13) and so detailed
balance holds:

m (x) p (x; t, y) = m (y) p (y; t, x) , 0 < x, y < 1.(4)

The speed density m (y) satisfies G∗ (m) = 0. It may be written as a Gibbs
measure with density: m (y) ∝ 1

g2(y)
e−U(y) where the potential function U (y)

reads:

U (y) = −2

∫ y

0

f (z)

g2 (z)
dz, 0 < y < 1(5)
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and with the measure dy
g2(y)

standing for the reference measure.

Furthermore, if p (s, x; t, y) is the transition probability density from (s, x)
to (t, y), s < t, then −∂sp = G (p), with terminal condition p (t, x; t, y) =
δy (x) and so p (s, x; t, y) also satisfies the KBE when looking at it backward
in time. The Feller evolution semigroup being time-homogeneous, one may as
well observe that with p := p (x; t, y), operating the time substitution t−s → t,
p itself solves the KBE

∂tp = G (p) , p (x; 0, y) = δy (x) .(6)

In particular, integrating over y, ∂tρt (x) = G (ρt (x)), with ρ0 (x) = 1 (x ∈ (0, 1)).
p (x; t, y) being a sub-probability, we may define the normalized conditional

probability density q (x; t, y) := p (x; t, y) /ρt (x), now with total mass 1. We
get

∂tq = −∂tρt (x) /ρt (x) · q +G∗ (q) , q (x; 0, y) = δy (x) .

The term bt (x) := −∂tρt (x) /ρt (x) > 0 is the time-dependent birth rate at
which mass should be created to compensate the loss of mass of the original
process due to absorption of (xt; t ≥ 0) at the boundaries. In this creation
of mass process, a diffusing particle started in x dies at rate bt (x) at point
(t, y) where it is duplicated in two new independent particles both started at
y (resulting in a global birth) evolving in the same diffusive way 1. The birth
rate function bt (x) depends here on x and t, not on y.

When the boundaries of xt are absorbing, the spectra of both −G and −G∗

are discrete (see [13] pp. 330): There exist positive eigenvalues (λk)k≥1 or-
dered in ascending sizes and eigenvectors (vk, uk)k≥1 of both −G∗ and −G
satisfying −G∗ (vk) = λkvk and −G (yk) = λkuk such that, with 〈uk, vk〉 :=∫ 1

0
uk (x) vk (x) dx and bk := 〈uk, vk〉−1, the spectral representation

p (x; t, y) =
∑
k≥1

bke
−λktuk (x) vk (y)(7)

holds.
Let λ1 > λ0 = 0 be the smallest non-null eigenvalue of the infinitesimal

generator −G∗ (and of −G). Clearly, −1
t
log ρt (x) →

t→∞
λ1 and by L’ Hospital

rule therefore bt (x) →
t→∞

λ1. Putting ∂tq = 0 in the latter evolution equation,

1Consider a diffusion process with forward infinitesimal generator G∗ governing the evolu-
tion of p (x; t, y) . Suppose that a sample path of this process has some probability that it will
be killed or create a new copy of itself, and that the killing and birth rates d and b depend on
the current location y of the path. Then the process with the birth and death opportunities
of a path has the infinitesimal generator λ (y) ·+G∗ (·) , where λ (y) = b (y)−d (y). The rate
can also depend on t and x.
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independently of the initial condition x

q (x; t, y) →
t→∞

q∞ (y) = v1 (y) ,(8)

where v1 is the eigenvector of −G∗ associated to λ1, satisfying −G∗v1 = λ1v1.
The limiting probability v1/norm (after a proper normalization) is called the
quasi-stationary Yaglom limit law of (xt; t ≥ 0) conditioned on being currently
alive at all time t (see [23]).

2.4. Additive functionals along sample paths. Let (xt; t ≥ 0) be the dif-
fusion model defined by (1) on the interval I where both endpoints are assumed
absorbing (exit). This process is thus transient and non-conservative. We wish
to evaluate the nonnegative additive quantities

α (x) = E

(∫ τx

0

c (xs) ds+ d (xτx)

)
,

where the functions c and d are both assumed nonnegative on I and ∂I =
{0, 1}. The functional α (x) ≥ 0 solves the Dirichlet problem:

−G (α) = c if x ∈ I

α = d if x ∈ ∂I,

and α is a super-harmonic function for G, satisfying −G (α) ≥ 0.

Some examples:
1. Assume c = 1 and d = 0 : here, α = E (τx) is the mean time of absorption

(average time spent in (0, 1) before absorption).
2. Whenever both {0, 1} are exit boundaries, it is of interest to evaluate

the probability that xt first hits [0, 1] (say) at 1, given x0 = x. This can be
obtained by choosing c = 0 and d (◦) = 1 (◦ = 1) .

3. Let y ∈ I and put c = 1
2ε

1 (x ∈ (y − ε, y + ε)) and d = 0. As ε→ 0, c con-

verges weakly to δy (x) and, α =: g (x, y) = E
(
lim 1

2ε

∫ τx

0
1(y−ε,y+ε) (xs) ds

)
=∫∞

0
p (x; s, y) ds is the Green function, solution to:

−G (g) = δy (x) if x ∈ I

g = 0 if x ∈ ∂I.

g is therefore the mathematical expectation of the local time at y, starting
from x (the sojourn time density at y). The solution is known to be (see [13],
pp. 198 or [5], pp. 280)

g (x, y) = 2m (y) (ϕ (1) − ϕ (y))
ϕ (x) − ϕ (0)

ϕ (1) − ϕ (0)
if x ≤ y

g (x, y) = 2m (y) (ϕ (y) − ϕ (0))
ϕ (1) − ϕ (x)

ϕ (1) − ϕ (0)
if x ≥ y.(9)
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The Green function is of particular interest to solve the general problem of
evaluating additive functionals α (x). Indeed, as is well-known, see [13] for
example, the integral operator with respect to the Green kernel inverts the
second order operator −G leading to

α (x) =

∫
I

g (x, y) c (y) dy if x ∈ I

α = d if x ∈ ∂I.

Under this form, α (x) appears as a potential function and any potential func-
tion is super-harmonic. Note that for all harmonic function h ≥ 0 satisfying
−G (h) = 0,

αh (x) :=

∫
I

g (x, y) c (y) dy + h (x)

is again super-harmonic because −G (αh) = c ≥ 0.

2.5. Transformation of sample paths (Doob-transform) producing
killing and/or branching. In the preceding Subsections, we have dealt with
a given process and recalled the various ingredients for the expectations of var-
ious quantities of interest, summing over the history of paths. In this setup,
there is no distinction among paths with different destinations nor did we al-
low for annihilation or creation of paths inside the domain before the process
reached one of the boundaries. The Doob transform of paths allows to do so.

Consider a one-dimensional diffusion (xt; t ≥ 0) as in (1). Let p (x; t, y) be
its transition probability. Let α (x) ≥ 0 as x ∈ [0, 1] .

Define a new transformed stochastic process (xt; t ≥ 0) by its transition
probability

p (x; t, y) =
α (y)

α (x)
p (x; t, y) .(10)

In this construction of (xt; t ≥ 0) through a change of measure, sample paths
x → y of (xt; t ≥ 0) with a large value of the ratio α (y) /α (x) are favored.
This is a selection of paths procedure due to Doob (see [6]).

The KFE for p clearly is ∂tp = G
∗
(p), with p (x; 0, y) = δy (x) and G

∗
(p) =

α (y)G∗(p/α (y)). The adjoint Kolmogorov backward operator of the trans-
formed process is therefore by duality

G (·) =
1

α (x)
G (α (x) ·) .(11)

Developing, with α′ (x) := dα (x) /dx and G̃ (·) := α′
α
g2∂x (·) +G (·), we get

G (·) =
1

α
G (α) · +G̃ (·) =: λ (x) · +G̃ (·)(12)
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and the new KB operator can be obtained from the latter by adding a drift term
α′
α
g2∂x to the one in G of the original process to form a new process (x̃t; t ≥ 0)

with the KB operator G̃ and by killing or branching its sample paths at rate

λ (x) := G (α) /α. In others words, with f̃ (x) := f (x) + α′
α
g2 (x) , the novel

time-homogeneous SDE to consider is

dx̃t = f̃ (x̃t) dt+ g (x̃t) dwt, x̃0 = x ∈ (0, 1) ,(13)

possibly killed or branching at rate λ (x) as soon as λ = 0. Whenever (x̃t; t ≥ 0)
is killed, it enters conventionally into some coffin state {∂} added to the state-
space.

Let us look at special cases:
(i) Suppose α ≥ 0 is such that −G (α) ≥ 0 (By α ≥ 0, we mean α > 0 in

I, possibly with α (0) or α (1) equal 0). Then α is called a super-harmonic (or
excessive) function for the process with infinitesimal generator G.

In this case, the rate λ (x) =: −d (x) satisfies λ (x) ≤ 0 and only killing
occurs at rate d (x). Let τ̃x be the new absorption time at the boundaries of
(x̃t; t ≥ 0) started at x (with τ̃x = ∞ would the boundaries be inaccessible
to the new process x̃t). Let τ̃x,∂ be the killing time of (x̃t; t ≥ 0) started at x
(the hitting time of ∂), with τ̃x,∂ = ∞ if G (α) ≡ 0. Then τx := τ̃x ∧ τ̃x,∂ is
the novel stopping time for (x̃t; t ≥ 0) . The SDE for (x̃t; t ≥ 0), together with
its global stopping time τx characterize the new process (xt; t ≥ 0) with full
generator G to consider.

(ii) Suppose α ≥ 0 is such that −G (α) ≤ 0. Then α is called a sub-harmonic
function for the process with generator G.

In this case, the rate λ (x) =: b (x) satisfies λ (x) ≥ 0 and only branching
occurs at rate b (x). The transformed process (with infinitesimal backward
generator G) accounts for a branching diffusion where a diffusing mother par-

ticle (with generator G̃ and started at x) lives a random exponential time with
constant rate 1. When the mother particle dies, it gives birth to a spatially
dependent random number M (x) of particles, with mean μ (x) = 1 + λ (x)

(where M (x)
d
= 1 + Δ (λ (x)) and Δ (λ (x)) is a geometrically distributed

random variable on {0, 1, 2, ...} with mean λ (x)). Then M (x) independent
daughter particles are started afresh where their mother particle died, with
the event M (x) = 0 impossible; they move along a diffusion governed by G̃
and reproduce, independently and so on for the subsequent particles.

(iii) If λ (x) =: b (x) is bounded above, λ may be put under the alternative
form

λ (x) = λ∗ (μ (x) − 1) ,
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where λ∗ = supx∈[0,1] λ (x) and 1 ≤ μ (x) ≤ 2. In this case, we can assume
that M (x) can only take the values 1 or 2 with probability p1 (x) and p2 (x)
respectively, with p1 (x) + p2 (x) = 1. Then, μ (x) = E (M (x)) = p1 (x) +
2p2 (x) = 1 + p2 (x) and

λ (x) = λ∗p2 (x) .

Note that μ (x) − 1 = p2 (x) > p1 (x) = 2 − μ (x) . We get a binary branching
process at rate λ∗ with the event to produce two particles being more likely
than the one to produce a single one, whatever is x.

(iv) Whenever α is such that −G (α) has no constant sign, then both killing
and branching can simultaneously occur at the death of the mother particle.
λ (x) may be put under the form λ (x) = b (x)−d (x) where b (x) and d (x) are
the birth (branching) and death (killing) components of λ (x).

(v) Suppose λ (x) is bounded below and let λ∗ = − infx∈[0,1] λ (x) > 0. Then
one may view λ as

λ (x) = λ∗ (μ (x) − 1) ,

where μ (x) ≥ 0. In this case, branching occurs at rate λ∗. When the mother
particle dies, it gives birth to a spatially dependent random number M (x)

of particles (where M (x)
d
= Δ (μ (x)) and Δ (μ (x)) is a geometrically dis-

tributed random variable on {0, 1, 2, ...} with mean μ (x) = 1 + λ (x) /λ∗).
With pm (x) = P (M (x) = m) = p0 (x) q (x)m, m ≥ 0, p0 (x) = 1

1+μ(x)
, q0 (x) =

1 − p0 (x)

λ (x) = λ∗

(∑
m≥1

mpm (x) − 1

)
= λ∗

(∑
m≥2

(m− 1) pm (x) − p0 (x)

)
.

Thus, the decomposition λ (x) = b (x)−d (x) holds, where b and d can be read
from

λ (x) = λ∗

(
μ (x)2

1 + μ (x)
− 1

1 + μ (x)

)
.

(vi) In some other examples, the killing/branching rate λ = G (α) /α is
bounded above and below. Then λ may be put under the form

λ (x) = λ∗ (μ (x) − 1) ,

where λ∗ = supx∈[0,1] |λ (x)| and 0 ≤ μ (x) ≤ 2. In this case, we can assume
that M (x) can only take the values 0 or 2 with probability p0 (x) and p2 (x)
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respectively, with p0 (x) + p2 (x) = 1. Then, μ (x) = E (M (x)) = 2p2 (x) and

λ (x) = λ∗ (2p2 (x) − 1) = λ∗ (p2 (x) − p0 (x)) ,

giving a simple decomposition of λ in the form λ (x) = b (x) − d (x) with
the mother particle living a random exponential time now with constant rate
λ∗ before giving birth to none or two descending particles (a binary branching
process). Note that p0 (x) ≥ p2 (x) (respectively p0 (x) ≥ p2 (x)) when μ (x) ≤ 1
(μ (x) ≥ 1).

Examples of α. When (xt; t ≥ 0) is non-conservative, consider

α (x) = E

(∫ τx

0

c (xs) ds+ d (xτx)

)
,

where the functions c and d are both assumed nonnegative on I and ∂I =
{0, 1}. Then α ≥ 0 solves the Dirichlet equation −Gα (x) = c (x) ≥ 0 on I
(= d (x) on ∂I) and so α is super-harmonic or excessive. We refer to [10] for
examples of Doob transforms based on such super-harmonic functions allowing
to understand various conditionings of interest when the starting point process
(xt; t ≥ 0) is a neutral WF diffusion or a WF diffusion with selection.

Whenever α is super-harmonic for G, then β = 1/α ≥ 0 is sub-harmonic for

G̃ = G+ α′
α
g2∂x. This results from the obvious identity

β−1G̃ (β) = −α−1G (α) ,

showing that −Gα ≥ 0 entails −G̃ (β) ≤ 0.

Whenever (xt; t ≥ 0) is conservative and ergodic

1

t
Ex

∫ t

0

c (xs) ds →
t→∞

μ (c) :=

∫ 1

0

c (y) dμ (y)

where dμ = m (y) dy is the invariant probability measure of (xt; t ≥ 0) . Define

lim
t→∞

Ex

∫ t

0

c (xs) ds− tμ (c) = α (x) .

Thus

α (x) :=

∫ ∞

0

(Ex (c (xs)) − μ (c)) ds

solves the Poisson equation

−Gα (x) = c̃ (x) := c (x) − μ (c) .

We conclude that α is G−super-harmonic if ever c (x) ≥ μ (c), ∀x. �
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Background (multiplicative functional and path integral). The
Doob transforms used here are particular instances of more general trans-
formations based on multiplicative functionals. Let xt be the diffusion process
(1) governed by G = f∂x + 1

2
g2∂2

x with x0 = x.
Define the multiplicative functional Mt as the solution of the differential

equation

dMt = Mt · (a (xt) dt+ b (xt) dwt) , M0 = 1,

where a and b are arbitrary twice differentiable functions. Integrating, we get

Mt = e
� t
0 (a− 1

2
b2)(xs)ds+

� t
0 b(xs)dws.

Let B be a Borel subset of I. Define a new process whose density p is ob-
tained after a modification of the original one while using the multiplicative
modulation factor Mt as∫

B

p (x; t, y)dy := Ex [Mt1 (xt ∈ B)] =

∫
B

Ex [Mt | xt = y] p (x; t, y) dy.

Integrating Mt over paths with fixed two endpoints x and y, Ex [Mt | xt = y]
can be interpreted as the Radon-Nykodym derivative of p with respect to p,
the density of xt. By duality, let

v (x, t) = Ex [Mtψ (xt)] , v (x, 0) = ψ (x) .

Applying Itô calculus, we get

∂tv = G (v) = (G+ gb∂x + a) (v) =:
(
G̃+ a

)
(v) ,

where the modified backward infinitesimal generator G is obtained by adding

a drift term gb∂x to G to produce G̃ and a multiplicative part a·. The adjoint
KFE giving the evolution of p is thus

∂tp = G
∗
(p) =

(
G̃∗ + a

)
(p) , p (x; 0, y) = δy (x) .

- (Cameron-Martin-Girsanov) For instance, when a = 0 and b = −f/g, the
generator of the transformed diffusion is G = 1

2
g2∂2

x killing the drift term of
the original process governed by G. In this case,

Mt = e
− 1

2

� t
0

�
( f

g )
2
(xs)ds+2 f

g
(xs)dws

�
.

Clearly in this case Mt is a martingale with Ex (Mt) = 1, assuming b to be
bounded. This construction kills the drift of the original process while using
a change of measure.
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- (Feynman-Kac) When b = 0, the generator of the transformed diffusion is
G = G + a adding a multiplicative component a to the one G governing the
original process. In this case

Mt = e
� t
0
a(xs)ds

is the exponential of the integrated rate. If v (x, t) = Ex [Mtψ (xt)], v (x, 0) =
ψ (x) , then v solves

∂tv = G (v) = (G+ a) (v) , v (x, 0) = ψ (x) .

In particular, if v (x, t) = Ex [Mt], v (x, 0) = 1 (x ∈ (0, 1)) , then v solves

∂tv = G (v) = (G+ a) (v) , v (x, 0) = 1 (x ∈ (0, 1)) .

- (Doob) Suppose now

dMt = Mt

(
α−1 (xt) dα (xt)

)
, M0 = 1.

This Mt is a particular instance of the general Mt introduced above. Indeed,
applying Itô calculus,

α−1 (xt) dα (xt) = α−1α′ [fdt+ gdw] +
1

2
α−1α′′g2dt,

leading to

a = α−1

(
fα′ +

g2

2
α′′
)

= G (α) /α =: λ (x)

b = α−1α′g.

Thus G = G+ gb∂x + a = G+ α−1α′g2∂x + λ (x) as already observed earlier.
Now, from the differential generation of Mt,

Mt =
α (xt)

α (x)
, M0 = 1

only depends on the terminal and initial values of (xs; 0 ≤ s ≤ t) and not
on its intermediate values (such a particular Doob transformation is thus a

gauge). Thus here Ex [Mt | xt = y] = α(y)
α(x)

consistently with the definition

p (x; t, y) = α(y)
α(x)

p (x; t, y) .

A super-harmonic example.
Although this work chiefly focuses on Doob-transforms where branching is

present in λ, let us give a significant example where the Doob transform just
produces killing like in (i). Suppose (xt; t ≥ 0) is a non-conservative diffusion.
Let λ1 be the smallest non-null eigenvalue of the infinitesimal generator G of
(xt; t ≥ 0) . Let α = u1 be the corresponding eigenvector, that is satisfying
−Gu1 = λ1u1 ≥ 0 with boundary conditions u1 (0) = u1 (1) = 0. Then c =
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λ1u1. The new KB operator associated to the transformed process (xt; t ≥ 0)
is

G (·) =
1

α
G (α) · +G̃ (·) = −λ1 · +G̃ (·) ,(14)

obtained while killing the sample paths of the process (x̃t; t ≥ 0) governed by

G̃ at constant death rate d = λ1. The transition probability of the transformed
stochastic process (xt; t ≥ 0) is

p (x; t, y) =
u1 (y)

u1 (x)
p (x; t, y) .

Define p̃ (x; t, y) = eλ1tp (x; t, y) . It is the transition probability of the process

(x̃t; t ≥ 0) governed by G̃; it corresponds to the original process (xt; t ≥ 0)
conditioned on never hitting the boundaries {0, 1} (the so-called Q−process
of (xt; t ≥ 0), see [18]). It is simply obtained from (xt; t ≥ 0) by adding the

additional drift term
u′1
u1
g2 to f , where u1 is the eigenvector of G associated

to its smallest non-null eigenvalue. The determination of α = u1 is a Sturm-
Liouville problem. When t is large, to the dominant order

p (x; t, y) ∼ e−λ1t
u1 (x) v1 (y)

〈u1, v1〉 ,

where v1 is the Yaglom limit law of (xt; t ≥ 0) . Therefore

p̃ (x; t, y) ∼ eλ1t
u1 (y)

u1 (x)
e−λ1t

u1 (x) v1 (y)

〈u1, v1〉 =
u1 (y) v1 (y)

〈u1, v1〉 .(15)

Thus the limit law of the Q−process (x̃t; t ≥ 0) is the normalized Hadamard
product of the eigenvectors u1 and v1 associated respectively to G and G∗. On
the other hand, the limit law of (x̃t; t ≥ 0) is directly given by

p̃ (x; t, y) →
t→∞

p̃ (y) =
1

Zg2 (y)
e
2
� y
0

f(z)+

�
u′
1

u1
g2

�
(z)

g2(z)
dz

=
u2

1 (y)

Zg2 (y)
e
2
� y
0

f(z)

g2(z)
dz
,(16)

where Z is the appropriate normalizing constant. Comparing (15) and (16)

v1 (y) =
u1 (y)

g2 (y)
e
2
� y
0

f(z)

g2(z)
dz

= u1 (y)m (y) .

The eigenvector v1 associated to G∗ is therefore equal to the eigenvector u1

associated to G times the speed density of (xt; t ≥ 0) .

When dealing for example with the neutral WF diffusion (see Section 4 for
additional details), it is known that λ1 = 1 with u1 = x (1 − x) and v1 ≡ 1.
The Q−process (x̃t; t ≥ 0) in this case obeys

dx̃t = (1 − 2x̃t) dt+
√
x̃t (1 − x̃t)dwt,(17)

with an additional stabilizing drift toward 1/2: f̃ (x) =
u′1
u1
g2 (x) = 1 − 2x.
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The limit law of the Q−process (x̃t; t ≥ 0) in this case is 6y (1 − y). The
latter conditioning is more stringent than the Yaglom conditioning and so
the limiting law has more mass away from the boundaries (compare with the
uniform quasi-stationary Yaglom limit (8) with v1 ≡ 1).

3. The Wright-Fisher example

In this Section, we briefly and informally recall that the celebrated WF
diffusion process with or without a drift may be viewed as a scaling limit
of a simple two alleles discrete space-time branching process preserving the
total number N of individuals in the subsequent generations (see [13], [7], for
example).

3.1. The neutral Wright-Fisher model. Consider a discrete-time Gal-
ton Watson branching process preserving the total number of individuals in
each generation. We start with N individuals. The initial reproduction law
is defined as follows: Let |kN | :=

∑N
m=1 km = N and kN := (k1, ..., kN)

be integers. Assume the first-generation random offspring numbers νN :=
(νN (1) , ..., νN (N)) admit the following joint exchangeable polynomial distri-
bution on the discrete simplex |kN | = N :

P (νN = kN ) =
N ! ·N−N∏N

n=1 kn!
.

This distribution can be obtained by conditioning N independent Poisson dis-
tributed random variables on summing to N . Assume subsequent iterations of
this reproduction law are independent so that the population is with constant
size for all generations.

Let Nr (n) be the offspring number of the n first individuals at the discrete
generation r ∈ N0 corresponding to (say) allele A1 (the remaining number
N − Nr (n) counts the number of alleles A2 at generation r). This sibship
process is a discrete-time Markov chain with binomial transition probability
given by:

P (Nr+1 (n) = k′ | Nr (n) = k) =

(
N

k′

)(
k

N

)k′ (
1 − k

N

)N−k′
.

Assume next that n = [Nx] where x ∈ (0, 1) . Then, as well-known, the dynam-
ics of the continuous space-time re-scaled process xt := N[Nt] (n) /N , t ∈ R+

can be approximated for large N , to the leading term in N−1, by a Wright-
Fisher-Itô diffusion on [0, 1] (the purely random genetic drift case):

dxt =
√
xt (1 − xt)dwt, x0 = x.(18)

Here (wt; t ≥ 0) is a standard Wiener process. For this scaling limit process, a
unit laps of time t = 1 corresponds to a laps of time N for the original discrete-
time process; thus time is measured in units of N . If the initial condition is



[Branching diffusion and selection 19

x = N−1, xt is the diffusion approximation of the offspring frequency of a
singleton at generation [Nt].

Equation (18) is a 1−dimensional diffusion as in (1) on [0, 1] , with zero

drift f (x) = 0 and volatility g (x) =
√
x (1 − x). This diffusion is already in

natural coordinate and so ϕ (x) = x. The scale function is x and the speed
measure [x (1 − x)]−1 dx. One can check that both boundaries are exit in this
case: The stopping time is τx = τx,0 ∧ τx,1 where τx,0 is the extinction time
and τx,1 the fixation time. The corresponding infinitesimal generators are
G (·) = 1

2
x (1 − x) ∂2

x (·) and G∗ (·) = 1
2
∂2
y (y (1 − y) ·) .

3.2. Non-neutral cases. Two alleles WF models (with non-null drifts) are
classically obtained by considering the binomial transition probabilities bin(N, pN) :

P (Nr+1 (n) = k′ | Nr (n) = k) =

(
N

k′

)(
pN

(
k

N

))k′ (
1 − pN

(
k

N

))N−k′

where

pN (x) : x ∈ (0, 1) → (0, 1)

is now some state-dependent probability (which is different from the identity
x) reflecting some deterministic evolutionary drift from the allele A1 to the
allele A2. For each r, we have

E (Nr+1 (n) | Nr (n) = k) = NpN

(
k

N

)
σ2 (Nr+1 (n) | Nr (n) = k) = NpN

(
k

N

)(
1 − pN

(
k

N

))
which is amenable to a diffusion approximation in terms of xt := N[Nt] (n) /N ,
t ∈ R+ under suitable conditions.

For instance, taking

pN (x) = (1 − π2,N) x+ π1,N (1 − x)

where (π1,N , π2,N) are small (N -dependent) mutation probabilities from A2 to
A1 (respectively A1 to A2). Assuming (N · π1,N , N · π2,N) →

N→∞
(π1, π2), leads

after scaling to the drift of WF model with positive mutations rates (π1, π2).
Taking

pN (x) =
(1 + s1,N)x

1 + s1,Nx+ s2,N (1 − x)

where si,N > 0 are small N−dependent selection parameter satisfying N ·
si,N →

N→∞
σi > 0, i = 1, 2, leads, after scaling, to the WF model with selective
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drift f (x) = σx (1 − x), where σ := σ1 − σ2. Typically, the drift f (x) is a
large N approximation of the bias: N (pN (x) − x) . The WF diffusion with
selection is thus:

dxt = σxt (1 − xt) dt+
√
xt (1 − xt)dwt(19)

where time is measured in units of N. Letting θt = Nt define a new time-scale
with inverse tθ = θ/N , the time-changed process yθ = xθ/N now obeys the
SDE

dyθ = syθ (1 − yθ) dθ +

√
1

N
yθ (1 − yθ)dwθ,

with a small diffusion term. Here s = s1−s2 and time θ is the usual time-clock.
The WF diffusion with selection (19) tends to drift to ◦ = 1 (respectively

◦ = 0) if allele A1 is selectively advantageous over A2 : σ1 > σ2 (respectively
σ1 < σ2) in the following sense: if σ > 0 (respectively < 0), the fixation
probability at ◦ = 1, which is [16]

P (τx,1 < τx,0) =
1 − e−2σx

1 − e−2σ
,

increases (decreases) with σ taking larger (smaller) values.
The usual way to look at the WF diffusion with mutation and selection

is to compose the two above mechanisms pN (x) corresponding to mutation
and selection respectively. In the scaling limit, one obtains the standard WF
diffusion model including mutations and selection as:

dxt = [(π1 − (π1 + π2) xt) + σxt (1 − xt)] dt+
√
xt (1 − xt)dwt.(20)

4. The neutral WF model

In this Section, we particularize the general ideas developed in the introduc-
tory Section 2 to the neutral WF diffusion (18) and draw some straightforward
conclusions most of which are known which illustrate the use of Doob trans-
forms.

4.1. Explicit solutions of the neutral KFE. As shown by Kimura in ([15]),
the Kolmogorov forward (and backward) equation is exactly solvable in this
case, using spectral theory. The solutions involve a series expansion in terms
of eigen-functions of the KB infinitesimal generator with discrete eigenvalues
spectrum.

Let λk = k (k + 1) /2, k ≥ 0. There exist uk = uk (x) and vk = vk (y)
solving the eigenvalue problem: −G (uk) = λkuk and −G∗ (vk) = λkvk. With

〈vk, uk〉 =
∫ 1

0
uk (x) vk (x) dx, the transition probability density p (x; t, y) of the
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neutral WF models admits the spectral expansion

p (x; t, y) =
∑
k≥1

bke
−λktuk (x) vk (y)where bk =

1

〈vk, uk〉

where uk (x) are the Gegenbauer polynomials rescaled on [0, 1] and normalized
to have value 1 at x = 0. In particular, u0 (x) = x, u1 (x) = x−x2, u2 (x) = x−
3x2+2x3, u3 (x) = x−6x2+10x3−5x4, u4 (x) = x−10x2+30x3−35x4+14x5, ...

Next, vk (y) = m (y)uk (y) where m (y) = 1/ (y (1 − y)) is the speed density
of the neutral WF diffusion. For instance, v0 (y) = 1

1−y , v1 (y) = 1, v2 (y) =

1 − 2y, v3 (y) = 1 − 5y + 5y2, v4 (y) = 1 − 9y + 21y2 − 14y3,...

Although λ0 = 0 really constitutes an eigenvalue, only v0 (y) is not a poly-
nomial and the spectral expansion of p should start at k = 1, expressing that p
is a sub-probability. When k ≥ 1, from their definition, the uk (x) polynomials
satisfy uk (0) = uk (1) = 0 in such a way that vk (y) = m (y) · uk (y) , k ≥ 1 is
a polynomial with degree k − 1.

The series expansion for p (x; t, y) solves the KFE of the WF model.

We have P (τx > t) =
∫ 1

0
P (xt ∈ dy) and so

ρt (x) := P (τx > t) =
∑
k≥1

∫ 1

0
vk (y) dy

〈vk, uk〉 e−λktuk (x)

is the exact tail distribution of the absorption time.
Since v1 (y) = 1, to the leading order in t, for large time

P (xt ∈ dy) = 6e−t · x (1 − x) dy + O (e−3t
)

which is independent of y. Integrating over y, ρt (x) := P (τx > t) ∼ 6e−t ·
x (1 − x) so that the conditional probability

P (xt ∈ dy | τx > t) ∼
t→∞

dy(21)

is asymptotically uniform in the Yaglom limit. As time passes by, given ab-

sorption did not occur in the past, xt
d→ x∞ (as t → ∞) which is a uniformly

distributed random variable on [0, 1].

4.2. Additive functionals for the neutral WF and Doob transforms.
Let (xt; t ≥ 0) be the neutral WF diffusion model defined by (18) on the interval
I = [0, 1] where both endpoints are absorbing (exit). Consider the additive
quantities

α (x) = E

(∫ τx

0

c (xs) ds+ d (xτx)

)
,
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where functions c and d are both nonnegative. With G = 1
2
x (1 − x) ∂2

x, α (x)
solves:

−G (α) = c if x ∈ I

α = d if x ∈ ∂I.

Therefore α is a super-harmonic function for G.
Take c = limε↓0 1

2ε
1(y−ε,y+ε) (x) =: δy (x) and d = 0, when y ∈ I : in this

case, α := g (x, y) is the Green function (the mean local time at y given the
process started at x). The solution takes the simple form

g (x, y) = 2
x

y
if x < y

g (x, y) = 2
1 − x

1 − y
if x > y.

The Green function solves the above general problem of evaluating additive
functionals α (x):

α (x) =

∫
I

g (x, y) c (y) dy if x ∈ I

α = d if x ∈ ∂I.

There are many interesting choices of c therefore leading to α, allowing to com-
pute for example the mean time till absorption for the neutral WF diffusion,
the probability to hit state 1 before 0... For each choice of α, it is interesting to
study the transformed process (xt; t ≥ 0) whose transition probability is given
by

p (x; t, y) =
α (y)

α (x)
p (x; t, y) ,

in terms of the original process transition probability p (x; t, y) . This allows for
example to understand the neutral WF process conditioned on exit at some
boundary and to evaluate for this new process interesting average additive
functionals such as the mean time needed to hit the exit boundary...For detailed
similar examples arising in the context of WF diffusions and related ones, see
[10].

5. The WF model with selection

Now we briefly focus on the diffusion process (19). Let (vk (y))k≥1 be the
Gegenbauer eigen-polynomials of the KF operator corresponding to the neutral
WF diffusion (18), so with eigenvalues λk = k (k + 1) /2, k ≥ 1. Define the
oblate spheroidal wave functions on [0, 1] as

wσk (y) =

′∑
l≥1

f lkvl (y) ,(22)
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where f lk obey the three-term recurrence defined in [20]. In the latter equality,
the l summation is over odd (even) values if k is even (odd).

Define vσk (y) = eσywσk (y) and uσk (x) = 1
m(x)

vσk (x) wherem (x) = e2σx/ (x (1 − x))

is the speed measure density of the WF model with selection (19).
The system (uσk (x) , vσk (x))k≥1 constitute a system of eigen-functions for the

WF with selection generators −G and −G∗ with eigenvalues λσk implicitly
defined in [20], thus with −G (uσk) = λσku

σ
k and −G∗ (vσk ) = λσkv

σ
k . The eigen-

function expansion of the transition probability density of the WF model with
selection is thus, [14]:

p (x; t, y) =
∑
k≥1

bσke
−λσ

k tuσk (x) vσk (y)(23)

where bσk = 〈vσk , uσk〉−1 . The WF model with selection can be viewed as a
perturbation problem of the neutral WF model (see [21]). There exist pertur-
bation developments of λσk around λk with respect to σ2, [14]. They are valid
and useful for small σ.

The WF diffusion process xt with selection (19) is non-conservative, with
finite hitting time τx of one of the boundaries. Following the general arguments
developed in Section 2, the Yaglom limit of xt conditioned on τx > t is the
normalized version of

vσ1 (y) = eσywσ1 (y) .(24)

The limit law of xt conditioned on never hitting the boundaries in the remote
future is the normalized version of

uσ1 (y) vσ1 (y) =
1

m (y)
vσ1 (x)2 = y (1 − y)wσ1 (y)2 .(25)

Because the latter conditioning is more stringent than the former, the proba-
bility mass of (25) is more concentrated inside the interval than (24). Compare
with the statements at the end of Section 2 concerning the neutral WF diffu-
sion.

6. Doob transform of the neutral WF model: sub-critical BD

In this Section, we define the branching WF diffusion model with selection
while applying a Doob transform to the neutral WF model, based on the sub-
harmonic additive functional α (x) = eσx, say with σ > 0. We then study in
detail the obtained branching process.

The starting point is thus the neutral WF diffusion: dxt =
√
xt (1 − xt)dwt,

x0 = x ∈ (0, 1) .
For this model, G = 1

2
x (1 − x) ∂2

x and both boundaries are exit. With
λk = k (k + 1) /2, k ≥ 0, its transition density p (x; t, y) admits the spectral
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representation

p (x; t, y) =
∑
k≥1

bke
−λktuk (x) vk (y) ,(26)

in terms of the Gegenbauer eigen-polynomials (see Subsection 4.1). We shall
consider the following transformation of paths on the neutral WF model: Let

α (x) = eσx, σ > 0 and consider G (·) = α−1G (α·) = G̃ (·) + b (x) · . We now

have G (α) = 1
2
σ2x (1 − x) eσx and so b (x) = G (α) /α = σ2

2
x (1 − x) ≥ 0.

Note that −G (α) ≤ 0 indicating that α is sub-harmonic for G.
In this case study, one selects sample paths of (xt; t ≥ 0) with large α (y)

and we claim that this is an alternative interesting way to introduce selection
in the neutral WF diffusion process.

The dynamics of (x̃t; t ≥ 0) governed by G̃ is easily seen to be the standard
WF with selection dynamics (19)

dx̃t = σx̃t (1 − x̃t) dt+
√
x̃t (1 − x̃t)dwt,

subject to additional quadratic branching at rate b (x) = 1
2
σ2x (1 − x) inside

I. We indeed have

G (·) = e−σxG (eσx·) = b (x) · +G̃ (·) ,
where

G̃ =: f̃∂x +
1

2
g̃2∂2

x = σx (1 − x) ∂x +
1

2
x (1 − x) ∂2

x

is the KBE operator of the dynamics (x̃t; t ≥ 0) . Recall that x̃t is transient
and so hits one of the boundaries {0, 1} in finite time τ̃x.

To summarize, in our branching diffusion way to look at selection, we move
from the neutral WF diffusion (xt; t ≥ 0) to the standard WF diffusion with
selection (x̃t; t ≥ 0) but subject to additional branching at rate b (x) .

Remark. With β (x) := α (x)−1 = e−σx, we clearly have

G (β (x)) = 0

and β is an harmonic function for G and as a result, Doob-transforming G by
β, we get

β−1G (β·) = (αβ)−1G (αβ·) = G (·)
which is the infinitesimal generator of the original neutral WF martingale. �

The birth (creating) rate b ≥ 0 in G is bounded from above on (0, 1). It may
be put into the canonical form b (x) = b∗ (μ (x) − 1) where b∗ = max

x∈[0,1]
(b (x)) =
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σ2

8
> 0 and

μ (x) = 1 + 4x (1 − x) ,(27)

whose range is the interval [1, 2] as x ∈ [0, 1] .

The density of the transformed process is p (x; t, y) = α(y)
α(x)

p (x; t, y) . It is

exactly known because so is p is from (26).
The transformed process (with infinitesimal backward generatorG) accounts

for a branching diffusion (BD) where a diffusing mother particle (with genera-

tor G̃ and started at x) lives a random exponential time with constant rate b∗.
When the mother particle dies, it gives birth to a spatially dependent random
number M (x) of particles (with mean μ (x)). M (x) independent daughter
particles are started where their mother particle died; they move along a WF
diffusion with selection and reproduce, independently and so on.

Because μ (x) is bounded above by 2 and larger than 1 (indicating a super-
critical branching process), we actually get a BD with binary scission whose
random offspring number satisfies (‘w.p.’ meaning ‘with probability’)

M (x) = 0 w.p. p0 (x) = 0

M (x) = 1 w.p. p1 (x) = 2 − μ (x)

M (x) = 2 w.p. p2 (x) = μ (x) − 1,

with p2 (x) ≥ p1 (x) (the event that 2 particles are generated in a splitting
event is more probable than a single one).

For such a transformed process, the trade-off is as follows: there is a com-
petition between the boundaries {0, 1} which are absorbing for the particle
system and the number of particles Nt (x) in the system at each time t, which
may grow due to binary branching events (or remain steady when M (x) = 1).

The density p of the transformed process has the following interpretation

p (x; t, y) = E

⎡⎣Nt(x)∑
n=1

p(n) (x; t, y)

⎤⎦ ,(28)

where p(n) (x; t, y) is the density at (t, y) of the nth alive particle descending
from the ancestral one (Eve), started at x. In the latter formula, the sum
vanishes if Nt (x) = 0. A particle is alive at time t if it came to birth before t
and has not been yet absorbed by the boundaries.

Let ρt (x) =
∫
(0,1)

p (x; t, y) dy. Then ρt (x) is the expected number of particle

alive at time t. We have

∂tρt (x) = G (ρt (x)) , ρ0 (x) = 1 (x ∈ (0, 1)) .
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Remark. From the Feynman-Kac formula, p in (28) is also

p (x; t, y) = Ex

(
e
� t∧�τx
0 b(�xs)ds | x̃t = y

)
p (x; t, y)

and

ρt (x) = Ex

(
e
� t∧�τx
0 b(�xs)ds

)
. �

But then q (x; t, y) := p (x; t, y) /ρt (x) obeys the forward PDE

∂tq (x; t, y) =

(
−∂tρt (x)

ρt (x)
+ b (y)

)
q (x; t, y) + G̃∗ (q (x; t, y))

as a result of ∂tp (x; t, y) = G
∗
(p (x; t, y)). We have

q (x; t, y) =
E
[∑Nt(x)

n=1 p(n) (x; t, y)
]

E [Nt (x)]
(29)

showing that q (x; t, y) is the average presence density at (t, y) of the system
of particles all descending from Eve started at x.

Clearly − log ρt(x)
t

→
t→∞

λ1 = 1 (and therefore also −∂tρt(x)
ρt(x)

by L’ Hospital

rule), because

ρt (x) =
1

α (x)

∑
k≥1

bke
−λktuk (x)

∫ 1

0

α (y) vk (y) dy.

The expected number of particles in the system decays globally and exponen-
tially at rate λ1.

The BD transformed process therefore admits an integrable Yaglom limit q∞,

solution to −G̃∗ (q∞) = (λ1 + b (y)) q∞ or −G∗
(q∞) = λ1q∞. With v1 (y) =

1, the first eigenvector of −G∗ associated to the smallest positive eigenvalue
λ1 = 1, q∞ is of the product form

q∞ (y) = C∗eσyv1 (y) =
σeσy

eσ − 1
.(30)

The arbitrary multiplicative constant C∗ was chosen in such a way that q∞ (y)
is a probability.

By analogy with the Yaglom construction, this limiting probability q∞can be
called the quasi-stationary Yaglom average density at (t, y) for the BD particle

system (it is also the ground state for G
∗
).

There is also a natural eigenvector φ∞ of the backward operator −G, satis-
fying −G (φ∞

)
= λ1φ∞ (the ground state for G). It is explicitly here

φ∞ (x) =
C

α (x)
u1 (x) =

6 (eσ − 1)

σ
e−σxx (1 − x) .(31)

The arbitrary multiplicative constant C = 6/C∗ was chosen in such a way that∫ 1

0
q∞ (y)φ∞ (y) dy = 1. Note that the spectral structures of both G

∗
and G
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are easily obtainable from the ones of G∗ and G thanks to the Doob transform
structure.

In the terminology of [22], both operators G (·) + λ1· and its adjoint are
critical 2. In this context, the constant λ1 is called the generalized principal
eigenvalue. The eigen-functions

(
φ∞, q∞

)
are their associated ground states.

We note that we have the L1−product property (See [22], Subsection 4.9).∫ 1

0

φ∞ (x) q∞ (x) dx = 6

∫ 1

0

u1 (x) v1 (x) dx = 1 <∞.

Remark. Using the Feynman-Kac representation of ρt (x) , we get

−1

t
log Ex

(
e
� t∧�τx
0 b(�xs)ds

)
→
t→∞

λ1 = 1 and

eλ1tEx

(
e
� t∧�τx
0

b(�xs)ds
)

→
t→∞

φ∞ (x) . �

With pm (x) = P (M (x) = m), let

l (x) =
∑
m≥1

pm (x)m logm = 2 log 2p2 (x) .

We have the x log x condition:∫ 1

0

l (x)φ∞ (x) q∞ (x) dx = 48 log 2

∫ 1

0

x (1 − x)u1 (x) v1 (x) dx <∞.(32)

We conclude (following [1] and [2]) that, as a result of the condition (32) being
trivially satisfied, global extinction holds in the following sense:

(i) P (Nt (x) = 0) →
t→∞

1, uniformly in x.

(ii) there exists a constant γ > 0 : eλ1t [1 − P (Nt (x) = 0)] →
t→∞

γφ∞ (x) ,

uniformly in x.
(iii) For all bounded measurable function ψ on I :

E

⎡⎣Nt(x)∑
n=1

ψ
(
x̃

(n)
t

)
| Nt (x) > 0

⎤⎦ →
t→∞

γ−1

∫
(0,1)

ψ (y) q∞ (y)dy.

2G (·) + λ1· (G
∗
(·) + λ1·) is said to be critical if there exists some function φ∞ ∈ C2 (re-

spectively q∞ ∈ C2), strictly positive in (0, 1) , such that: G
(
φ∞
)
+ λ1φ∞ = 0 (respectively

G
∗
(q∞) + λ1q∞ = 0) and the operators do not possess a minimal positive Green function.
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From (i), it is clear that the process gets ultimately extinct with probability
1. In the trade-off between pure branching and absorption at the boundaries,
all particles get eventually absorbed and the global BD process turns out be
sub-critical (even though μ (x) = EM (x) > 1 for all x ∈ (0, 1)): Probability
mass escapes out of I although the BD survives with positive probability.

In the statement (ii) , the quantity 1−P (Nt (x) = 0) = P (Nt (x) > 0) is also
P (T (x) > t) where T (x) is the global extinction time of the particle system
descending from an Eve particle started at x. The number −λ1 is the usual
Malthus exponential decay rate parameter. From (ii) , φ∞ (x) has a natural
interpretation in terms of the propensity of the particle system to survive to
its extinction fate: the so-called reproductive value in demography.

(iii) with ψ = 1 reads E [Nt (x) | Nt (x) > 0] →
t→∞

γ−1 giving an interpreta-

tion of the constant γ (which may be hard to evaluate in practise).

The ground states of G + λ1 and its adjoint are thus
(
φ∞, q∞

)
and explicit

here. It is useful to consider the process whose infinitesimal generator is given
by the Doob-transform

φ
−1

∞
(
G+ λ1

) (
φ∞·) = φ

−1

∞
(
G̃+ b+ λ1

) (
φ∞·) ,

because product-criticality is preserved under this transformation. The ground
states associated to this new operator and its dual are

(
1, φ∞q∞

)
. Developing,

we obtain a process whose infinitesimal generator is

G̃ +
φ
′
∞
φ∞

g2∂x = G+
u′1
u1

g2∂x,

with no multiplicative part. In our case study, we get 1
2
x (1 − x) ∂2

x+(1 − 2x) ∂x
adding a stabilizing drift towards 1/2 to the original neutral WF model. The
associated diffusion process is positive recurrent and so its invariant measure
φ∞q∞ = 6u1v1 = 6y (1 − y) is integrable with mass 1. It is the beta(2, 2)
limit law of the Q−process (see (17) and the comments at the end of Section
2 relative to the neutral WF diffusion).

Remarks.

(i) At time t, let
(
x̃

(n)
t

)Nt(x)

n=1
denote the positions of the BD particle sys-

tem. Let u (x, t; z) = E

[∏Nt(x)
n=1 z

ψ
��x(n)

t

�]
stand for the functional generating

function (|z| ≤ 1) of the measure-valued branching particle system. u (x, t; z)
obeys the nonlinear (quadratic) Kolmogorov-Petrovsky-Piscounoff PDE, [17]:

∂tu (x, t; z) = b∗θ (x, u (x, t; z)) + G̃ (u (x, t; z)) ; u (x, 0; z) = zψ(x),
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where θ (x, z) = E
[
zM(x)

]− z = (p2 (x) z2 + p1 (x) z) − z or

θ (x, z) = 4x (1 − x) z (z − 1)

is the shifted probability generating function of the branching law of M (x) .
Thus, the nonlinear part reads b∗θ (x, u (x, t; z)) = b (x) u (x, t; z) (u (x, t; z) − 1)
which is quadratic in u.

In particular, if u (x, t) := ∂zu (x, t; z)z=1 = E
[∑Nt(x)

n=1 ψ
(
x̃

(n)
t

)]
, u (x, t)

obeys the linear backward PDE

∂tu (x, t) = b (x) u (x, t) + G̃ (u (x, t)) ; u (x, 0) = ψ (x)

involving G (·) = G̃ (·) + b (x) ·. We have the Feynman-Kac interpretation

u (x, t) = Ex

(
e
� t∧�τx
0 b(�xs)dsψ (x̃t)

)
.

The latter evolution equation is the backward version of the forward PDE
giving the evolution of p (x; t, y) as ∂tp (x; t, y) = G

∗
(p (x; t, y)) , p (x; 0, y) =

δx (y) .

(ii) Let us look at the branching diffusion process governed by G would time
be measured using the time substitution

θt =

∫ t

0

g2 (x̃s) ds =

∫ t

0

x̃s (1 − x̃s) ds

for each of the particles that came to birth before t.
Then G → G := 1

x(1−x)G = σ∂x + 1
2
∂2
x + 1

2
σ2 · . In particular, each motion

yθ = x̃tθ is a Brownian motion with constant drift (a Gaussian process). This
new G is the one of absorbing Brownian motion with drift σ on [0, 1] , including
branching at constant rate 1

2
σ2. The Sturm-Liouville problem for G admits the

eigenvalues λk = k2+σ2

2
, k ≥ 1 with eigen-states uk (x) ∝ e−σx sin (kπx) and

vk (y) ∝ eσy sin (kπy) . The spectral gap is λ1 = 1+σ2

2
> 0 and the time-changed

branching diffusion also becomes eventually extinct, sub-critically: The time
substitution changes the spectral structure of the model but not its qualitative
features. �
7. Doob transform of the WF model with mutations: critical

BD

In this Section, we start from the WF model with mutations. Using the
same Doob transform based on the additive functional α (x) = eσx to introduce
selection, we end up with a WF diffusion process with killing and branching
describing the effect of selection on the WF model in the presence of mutations.
We show that in this setup, the resulting branching diffusion process is no
longer sub-critical; rather, it turns out to be critical.
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Suppose the starting point model is now the WF diffusion with mutations:

dxt = (π1 − πxt) dt+
√
xt (1 − xt)dwt, x0 = x ∈ (0, 1) ,

with π := π1 + π2. For this model, G = (π1 − πx) ∂x + 1
2
x (1 − x) ∂2

x and
both boundaries are chosen as being entrance (reflecting)3. The WF diffusion
process with mutations is now ergodic. With

λk =
k (k − 1 + π)

2
, k ≥ 0,

its transition density p (x; t, y) now admits the discrete spectral representation

p (x; t, y) =
∑
k≥0

bke
−λktuk (x) vk (y) .(33)

Here, uk (x) are the Jacobi polynomials rescaled on [0, 1] and normalized to
have value 1 at x = 0. In particular, u0 (x) = 1, u1 (x) = 1 − π

π2
x, u2 (x) =

1 − 2(1+π)
π2

x+ (1+π)(2+π)
π2(1+π2)

x2,... Next, vk (y) = m (y)uk (y) where

m (y) =
Γ (2π)

Γ (2π1) Γ (2π2)
y2π1−1 (1 − y)2π2−1

is the speed density of the ergodic WF diffusion with mutations (its normalized
invariant measure). Note that the k = 0 term in (33) is precisely m (y) as
required. Because the transition probability density of the WF diffusion with
mutations has also a discrete spectral representation, this model is amenable
to a similar analysis than the neutral WF diffusion.

Proceeding as for the neutral case, we shall consider the following trans-
formation of paths for the WF model with mutations: Let α (x) = eσx and
consider a transformed process with infinitesimal generator G (·) = α−1G (α·) .
The multiplicative part of G is now

λ (x) = G (α) /α = σ (π1 − πx) +
σ2

2
x (1 − x) .

Note that now α is neither sub-harmonic nor super-harmonic for the infini-
tesimal generator G including mutations because the sign of λ (x) varies as x
varies.

In this case study, one selects sample paths of the WF diffusion model with
mutations (xt; t ≥ 0) with large terminal values of α (y) . The dynamics of

3When both the mutation rates u1 and u2 are greater than 1/2, the boundaries are
entrance. When either u1 or u2 is smaller than 1/2 the corresponding boundary is regular
and one needs to specify whether it is reflecting or absorbing or a mixture of the two. We
force here the regular boundaries to be entrance.
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(x̃t; t ≥ 0) is easily seen to be the WF with mutation and selection dynamics
of the type (20)

dx̃t = [(π1 − πx̃t) + σx̃t (1 − x̃t)] dt +
√
x̃t (1 − x̃t)dwt,

subject to additional quadratic killing and branching at rate λ (x) inside I.
We indeed have

G (·) = e−σxG (eσx·) = λ (x) · +G̃ (·) ,
where G̃ = [(π1 − πx) + σx (1 − x)] ∂x + 1

2
x (1 − x) ∂2

x is the KBE operator of
the dynamics (x̃t; t ≥ 0) .

To summarize, in our branching diffusion way to look at the action of selec-
tion, we move from the WF diffusion with mutations (xt; t ≥ 0) to the standard
WF diffusion with mutation and selection (x̃t; t ≥ 0) , but subject to additional
killing/branching at rate λ (x) .

Remark. With β = α−1 = e−σx, again G (β) = 0 and β−1G (β·) = G (·) is
the infinitesimal generator of the original WF model, now with mutations. �

The birth (creating) and death (annihilating) rate λ in G is bounded from
above and below on (0, 1). It may now be put into the canonical form λ (x) =
λ∗ (μ (x) − 1) where λ∗ = max

x∈[0,1]
(|λ (x)|)and

μ (x) = 1 +
λ (x)

λ∗
(34)

whose range belongs to the interval [0, 2] as x ∈ [0, 1] .
Note that when π > σ/2, λ∗ = σ (π1 ∨ π2) whereas when π < σ/2, λ∗ =

λ (x∗) ∨ σπ2 where x∗ = 1/2 − π/σ > 0.

The density of the transformed process is p (x; t, y) = α(y)
α(x)

p (x; t, y) . It is

exactly known because p is known from (33).
The transformed process (with infinitesimal backward generatorG) accounts

for a branching diffusion (BD) where a diffusing mother particle (with gener-

ator G̃ and started at x) lives a random exponential time with constant rate
λ∗. When the mother particle dies, it gives birth to a spatially dependent
random number M (x) of particles (with mean μ (x)). If M (x) = 0, M (x)
independent daughter particles are started where their mother particle died;
they move along a WF diffusion with mutation and selection (with generator

G̃) and reproduce independently, and so on.
Because μ (x) is bounded above by 2 and larger than 0, we actually get a

BD with binary scission whose random offspring number satisfies

M (x) = 0 w.p. p0 (x) = 1 − μ (x) /2
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M (x) = 1 w.p. p1 (x) = 0

M (x) = 2 w.p. p2 (x) = μ (x) /2.

Note that

λ (x) = λ∗ (p2 (x) − p0 (x)) =: b (x) − d (x)

identifying the birth and death components of the full multiplicative rate λ (x).
For such a transformed process, the trade-off is of a different nature: there is

a competition between the boundaries {0, 1} which are now reflecting for the
system of particles and the number of particles Nt (x) in the system at each
time t, which may grow or diminish due either to branching or killing events.
In the presence of mutations, the particles are no longer killed once they hit
the boundaries, suggesting that there should be a greater amount of them alive
in the system. However, in this new model, there is an opportunity to kill the
particles inside the definition domain, when they branch. The question now
being: does the new trade-off result in global extinction or global explosion of
the particle system? We will now show that critical global extinction occurs.

The density p of the transformed process again has the interpretation (28),
where p(n) (x; t, y) is the density at (t, y) of the nth alive particle descending
from the ancestral one (Eve), started at x. In the latter formula, the sum
vanishes if Nt (x) = 0. A particle is alive at time t if it came to birth before t
and has not yet been killed by a killing event.

Let ρt (x) =
∫
(0,1)

p (x; t, y) dy. Then ρt (x) is the expected number of particle

alive at time t. We have

∂tρt (x) = G (ρt (x)) , ρ0 (x) = 1 (x ∈ (0, 1)) .

But then q (x; t, y) := p (x; t, y) /ρt (x) obeys the forward PDE

∂tq (x; t, y) =

(
−∂tρt (x)

ρt (x)
+ b (y)

)
q (x; t, y) + G̃∗ (q (x; t, y))

as a result of ∂tp (x; t, y) = G
∗
(p (x; t, y)). We again have (29), with q (x; t, y)

the average presence density at (t, y) of the system of particles all descending
from Eve started at x.

Clearly − log ρt(x)
t

→
t→∞

λ0 = 0 (and therefore also −∂tρt(x)
ρt(x)

), because

ρt (x) =
1

α (x)

∑
k≥0

bke
−λktuk (x)

∫ 1

0

α (y) vk (y) dy.
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The expected number of particles in the system decays globally at rate λ1

towards the non-zero limiting value

ρ∞ (x) := α (x)−1 b0u0 (x)

∫ 1

0

α (y) v0 (y) dy = e−σx
∫ 1

0

eσym (y) dy.

The BD transformed process therefore admits an integrable Yaglom limit q∞,

solution to −G̃∗ (q∞) = λ (y) q∞ or −G∗
(q∞) = 0. With v0 (y) = m (y) , the

first eigenvector of −G∗ associated to the smallest positive eigenvalue λ0 = 0
(the equilibrium density of the WF diffusion with mutations), q∞ is of the
product form

q∞ (y) =
eσym (y)∫ 1

0
eσym (y) dy

.(35)

This explicit limiting probability q∞is the Yaglom limiting average presence
density at (t, y) for the BD system of particles (it is also the ground state for

G
∗
).
There is also a natural eigenvector φ∞ of the backward operator −G, satis-

fying −G (φ∞
)

= 0 (the ground state for G). It is explicitly here

φ∞ (x) =
1

α (x)
u0 (x)

∫ 1

0

eσym (y) dy = e−σx
∫ 1

0

eσym (y) dy.(36)

Both operators G (·) and its adjoint are again critical. The constant λ0 = 0
is the new generalized principal eigenvalue; The eigen-functions

(
φ∞, q∞

)
are

the new associated ground states.
We note that we have the L1−product property∫ 1

0

u0 (x) v0 (x) dx =

∫ 1

0

φ∞ (x) q∞ (x) dx = 1 <∞.

Clearly the ground states of −G∗
and −G are defined up to arbitrary mul-

tiplicative constants. Note that we chose these constants in such a way that∫ 1

0
q∞ (y)dy = 1 and

∫ 1

0
φ∞ (x) q∞ (x) dx = 1.

With pm (x) = P (M (x) = m), let

κ (x) =
∑
m≥2

m (m− 1) pm (x) = 2p2 (x) .

Because p2 (x) is a degree two polynomial in x, we have the condition:∫ 1

0

κ (x)φ∞ (x) q∞ (x) dx = 2

∫ 1

0

p2 (x) u0 (x) v0 (x) dx <∞.(37)

We conclude (following [1] and [2]) that, as a result of the condition (37) being
trivially satisfied, global extinction holds critically, in the following sense:

(i) P (Nt (x) = 0) →
t→∞

1, uniformly in x.
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(ii) Let μt =
∑Nt(·)

n=1 δx(n)
t

, with μt (ψ) =
∑Nt(·)

n=1 ψ
(
x

(n)
t

)
.

There exists a finite positive constant :

μ =
1

2t

∫ 1

0

Ex

[
μt (φ)2 − μt

(
φ2
)]
q∞ (x) dx =

1

2t
Eq∞

[
μt (φ)2 − μt

(
φ2
)]

such that t [1 − P (Nt (x) = 0)] →
t→∞

μ−1φ∞ (x) , uniformly in x.

(iii) For all bounded measurable function ψ on I :

1

t
E

⎡⎣Nt(x)∑
n=1

ψ
(
x̃

(n)
t

)
| Nt (x) > 0

⎤⎦ →
t→∞

μ

∫
(0,1)

ψ (y) q∞ (y) dy.

From (i), it is clear that the process gets ultimately extinct with probability
1. In the trade-off between killing-branching and reflection at the boundaries,
all particles get eventually absorbed but the global BD process turns out be
critical. Thus, the killing part of λ (x) is strong enough to avoid the explosion
of the number of particles inside the unit interval, resulting in an overall critical
process where global extinction still holds.

In the statement (ii) , 1−P (Nt (x) = 0) = P (T (x) > t) where T (x) is the
global extinction time of the particle system. The Pareto tails of T (x) decay
like t−1, thus algebraically slowly: the time till extinction in this critical model
is much longer than in the previous neutral sub-critical case (with exponential
tails). From (ii) , φ∞ (x) has again a natural interpretation in terms of the
propensity of the particle system to survive to its extinction fate.

(iii) with ψ = 1 reads 1
t
E [Nt (x) | Nt (x) > 0] →

t→∞
μ giving an interpretation

of the constant μ. The constant μ is also ([2], page 287)

μ =
1

2
λ∗

∫ 1

0

κ (x)φ∞ (x)2 q∞ (x) dx = λ∗

∫ 1

0

p2 (x)φ∞ (x)2 q∞ (x) dx <∞

and so is explicitly available in our case.

The ground states of G + λ0 and its adjoint are thus
(
φ∞, q∞

)
and explicit

here. It is also useful to consider the process whose infinitesimal generator is
given by the Doob-transform

φ
−1

∞ G
(
φ∞·) = φ

−1

∞
(
G̃+ λ

) (
φ∞·) ,

because product-criticality is preserved under this transformation. The ground
states associated to this new operator and its dual are

(
1, φ∞q∞

)
. Developing,
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we obtain a process whose infinitesimal generator is

G̃+
φ
′
∞
φ∞

g2∂x = G+
u′0
u0
g2∂x = G,

with no multiplicative part. The associated diffusion process is the starting
point WF diffusion with mutations, which is positive recurrent and so its in-
variant measure φ∞q∞ = u0v0 = m (y) is integrable.

Remark. The functional generating function u (x, t; z) = E

[∏Nt(x)
n=1 z

ψ
��x(n)

t

�]
of the measure-valued branching particle system obeys now the nonlinear (qua-
dratic) PDE:

∂tu (x, t; z) = λ∗θ (x, u (x, t; z)) + G̃ (u (x, t; z)) ; u (x, 0; z) = zψ(x),

where θ (x, z) = E
[
zM(x)

]− z = (p2 (x) z2 + p0 (x)) − z or

θ (x, z) = (z − 1) (p2 (x) z − p0 (x))

is the shifted probability generating function of the branching law of M (x) .

If u (x, t) := ∂zu (x, t; z)z=1 = E
[∑Nt(x)

n=1 ψ
(
x̃

(n)
t

)]
, recalling λ (x) = λ∗ (p2 (x) − p0 (x)) ,

u (x, t) obeys the linear backward PDE

∂tu (x, t) = λ (x) u (x, t) + G̃ (u (x, t)) ; u (x, 0) = ψ (x)

involving G (·) = G̃ (·) + λ (x) ·. It holds that

u (x, t) = Ex

(
e
� t
0
λ(�xs)dsψ (x̃t)

)
. �
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