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Abstract

In multi-group epidemiological models with nonrandom mixing be-
tween people in the different groups, often artificial constraints have to
be imposed in order to satisfy the balance conditions. Based on the
model in this article, we construct a simple biased mixing model where
the balance conditions are automatically satisfied as a natural conse-
quence of the equations. We propose and analyze a heterogeneous,
multigroup, susceptible-infective-susceptible (SIS) sexually transmitted
disease (STD) model where the desirability and acceptability in part-
nership formations are functions of the infected individuals.

Mathematics Subject Classification: 92BXX

Keywords: Balance constraint; Reproductive number; Sensitivity; Part-
ners

1 Introduction

Sexually transmitted disease (STD), such as AIDS, have spread into nearly
all countries of the world. To prevent further spread of these epidemics, it
is important to understand how these infectious disease are transmitted.The
transmission dynamics are complex. Many biological and sociological factors
are involved. One of major determinants in the spread of STD’s is the way
that individuals select their sexual partners. In a mathematical model for the
spread of AIDS, it is important to understand and correctly account for the
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formation of their partnerships. In modeling partnerships, the partnership
formation must satisfy the balance constraints [2, 3, 4, 1, 7, 11, 15].

Sexual behavior changes are documented in virtually every survey of homo-
sexual or bisexual men and injection drug users over the past decade [1, 6, 16,
17]. These behavior changes occur as sexually active individuals become more
cautious in their sexual activities to avoid infection by an STD such as AIDS.
Understanding the effect of these behavior changes can help guide education
programs on the prevention of STD transmission.

Some of the analysis of these behavior studies [6, 13, 19], has implied that
the reported behavior changes combined with observed reduction in incidence
of rectal gonorrhea, HIV infection, and AIDS have been large enough to re-
duce the rate of transmission of HIV and possibly reduce the rate of HIV
transmission below the epidemic threshold [9].

A goal of this research is to better understand how models with dynamic
partnership formation differ from the more traditional models where the num-
ber or desirability of partnership formation is constant. By making the part-
nership formation infection dependent, we can analyze how sensitive the trans-
mission dynamics of the epidemic are to changes in sexual behaviors.

2 Model Formation

Divide the susceptible and infected population into K groups, Si and Ii, i =
1, ..., K, and consider the simple transmission model system,

{
dSi/dt = μ(S0

i − Si) − λiSi + γiIi,
dIi/dt = −(μ + γi)Ii + λiSi,

i = 1, ..., K, (1)

where μ is the natural death rate, γi is the rate of recovery for infected indi-
viduals in group i, λi is the rate of infection, and μS0

i is the rate of recruitment
into group i.

The formation of partnerships plays an essential role in determining the
function λi, which is one of the most important factors in modeling STD’s.
Here a partnership is an activity between two people where the infection can be
transmitted. We assume people in each group behave the same when selecting
a partner, but have biases between groups, but there is heterogeneous mixing
among the groups.

Let qij be the preference of individuals in group i to have a partner from
group j; that is, qij the fraction of people in group j with whom an individual
in group i desires forming a partnership. Thus qij describes the desirability of
individuals in group i to have a partner from group j. It is also the acceptability
of people in group j to people in group i [10].
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Under the condition that enough potential partners are available, the prob-
ability pij that a partnership forms between individuals from group i and group
j, or the mutually acceptable rate for partnership formation [14], is,

pij ≡ qijqji.

Define ci to be the number of social contacts per unit time for a person
in group i. The probability that a contact is with a person from group j is
cjNj/

∑
k

ckNk, where Nk = Sk+Ik. This also characterize the availability of sex-

ual contacts with partners in group j. Hence, the probability of a partnership

forming between individuals from group i and group j is pij

(
cjNj/

∑
k

ckNk

)

[9].
We define βij to be the probability of disease transmission per contact

between an infected partner in group j and a susceptible individual in group
i [9, 10]. Under these assumptions, the infection rate of people in group i is

λi = ci

K∑
j=1

pijβij(cjIj/
∑
k

ckNk), (2)

where we assume that Ii/Nj is the probability that a random contact from
group j is with an infected individual.

2.1 Balance constraints

We denote the number of partners of people in group i from group j by Tij .
Note that Tij = Tji. In many biased mixing models where an attempt is made
to directly control the number of partnered by constructing preferred, selective,
or structured mixing functions [7, 8, 11, 12, 18]. Therefore, it follows from

Tij = pij(cjNj/
∑
k

ckNk)ciNi = pij(ciNi/
∑
k

ckNk)cjNj = Tji (3)

that the balance constraint is always satisfied. Using the advantages of the
selective mixing model, we further assume that the desirability and accept-
ability depend on the fraction of infected individuals in the populations. This
assumption characterizes possible behavior changes of sexually active individ-
uals. More specifically, we assume that the desirability of people in group i
having a partner in group j or the acceptability of people in group j to people
in group i, qij , is a decreasing function of the fraction of infected individuals
in group j. Then the mutually acceptable rates for partnership formation can
be expressed as,

pij = pji = qij(Ij/Nj)qji(Ii/Ni). (4)
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Therefore, the infection rates are

λi = ci

K∑
j=1

βijqij(Ij/Nj)qji(Ii/Ni)(cjIj/
∑
k

ckNk)

= ciIi/Ni

K∑
j=1

βijqijqji(Ij/Nj)(cjIj/
∑
k

ckNk). (5)

2.2 The number of partners

The number of sexual partners per individual in many multi-group models is
assumed to be ci [10]. However,If the mixing is biased, the number of partners
will vary in time depending on the combination of desirability, acceptability,
and availability. From Section 2, the number of partners per person in group
i is

ni = ci

⎛
⎝ K∑

j=1

pij(cjNj/
∑
k

ckNk)

⎞
⎠ . (6)

2.3 Example

Consider a two group model governed by

{
dSi/dt = μ(S0

i − Si) − λiSi + γiIi,
dIi/dt = −(μ + γi)Ii + λiSi,

i = 1, 2, (7)

with

λi = ci

2∑
j=1

βijqijqji(cjI
2
j Ii/NiNjN

0)

= (ciβi1qi1q1i((c1I
2
1Ii/NiN1N

0)) + ciβi2qi2q2i((c2I
2
2Ii/NiN2N

0))). (8)

Then

ni = ci(pi1(c1N1/(c1N1 + c2N2)) + pi2(c2N2/(c1N1 + c2N2))), (9)

and

n1 − n2 = (1/(c1N1 + c2N2))(c
2
1p11N1 + c1c2p12N2 − c2c1p21N1 − c2

2p22N2)

= (1/(c1N1 + c2N2))((c1p11 − c2p)c1N1 + (c1p − c2p22)c2N2), (10)

where p ≡ p12 = p21. If c1 < c2 and p11 < p < p22 or c1 > c2 and p11 > p > p22,
then n1 is always less than or greater than n2 respectively. Otherwise, they
may alternate at different times. We use the following model parameters,
S0

1 = 450, S1(0) = 450, I1(0) = 50, S0
2 = 200, S2(0) = 200, I2(0) = 350, c1 =
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10, c2 = 5, μ = 0.015, q11 = 0.6, q12 = 1, q21 = 0.5, q22 = 0.2, γ1 = 0.1, γ2 =
0.05. Depending on the probability of transmission, the disease may spread
in the population or die out eventually. For example, when β11 = 0.5, β12 =
0.4, β21 = 0.4, β22 = 0.2, the disease dies out (Fig.1), but when β11 = 0.5, β12 =
0.5, β21 = 0.4, β22 = 0.2, the disease persists (Fig. 2).

3 Threshold Conditions

The contact of threshold conditions is one of the most important concepts in
mathematical epidemiology. It specifies when the disease spreads if a small
number of infected people are introduced into the susceptible population. The
threshold conditions are usually characterized by the reproductive number
which can be obtained by the study of stability of the infection-free equilibrium.
In model (1), there is an infection-free equilibrium (Si = S0

i , Ii = 0), i =
1, ..., K. The stability of this equilibrium is completely determined by the
equations of Ii about the equilibrium Ii = 0, and can be investigated by either
constructing a Liapunov function or examining the eigenvalues of the Jacobian
matrix evaluated at the equilibrium [10].

3.1 Reproductive number

The jacobian matrix of (8) at the zero solution has the form of

J0 =

( −μ − γ1 + β11p11S
0
1c

2
1/N

0 β12p12S
0
1c1c2/N

0

β21p21S
0
2c1c2/N

0 −μ − γ2 + β22p22S
0
2c

2
2/N

0

)
, (11)

with N0 =
∑2

j=1 cjS
0
j . We simplify the notation by defining δi = μ + γi and

aij = βijS
0
i cicj/N

0. Then

J0 =

( −δ1 + a11p11 a12p12

a21p21 −δ2 + a22p22

)
. (12)

The larger eigenvalue of J0,

λ = (−(1/δ)+(a11p11+a22p22)+
√

((δ1 − a11p11) − (δ2 − a22p22))2 + 4(a12p12)(a21p21))/2,
(13)

with δ = 1/(δ1 + δ2) is real. If λ < 0, the zero solution of (8) is stable, and
if λ > 0, it is unstable. Now ,we can take the reproductive number, R0, as
below,

R0 = δ(a11p11 +a22p22)+
√

((δ1 − a11p11) − (δ2 − a22p22))2 + 4(a12p12)(a21p21),
(14)

with δ = 1/(δ1 +δ2). Hence, if R0 < 1, the epidemic dies out,and if R0 > 1,
the epidemic spreads in the population.
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3.1.1 Sensitivity studies

Consider, the two group model where the behavior of people in group 1,
(q12, q11), and the average acceptability of place in group 2, a = q22 + q21

are fixed. We now use q21 ≡ p, 0 ≤ p ≤ a, as a parameter to study the effects
of the relative acceptability of people in group 1 on the reproductive number.
A large p implies that people in group 2 prefer their partners more from group
1 and are less interested in forming partners within their own group. In terms
of p,

R0(p) = δ(a11(a−p)2+a22q
2
22)+

√
((δ1 − a11(a − p)2) − (δ2 − a22q2

22))
2 + (4a12a21q2

21)p
2),

(15)
with δ = 1/(δ1 + δ2).

3.1.2 Example

For the two group model (8) ,when we use equation (16) with the parameters,
S0

1 = 100, S0
2 = 200, β11 = 0.12, β12 = 0.08, β21 = 0.05, β22 = 0.1, μ =

0.015, γ1 = 0.1, γ2 = 0.05, q21 = 0.7,
we have Fig.3, and the dynamics of the susceptibles and infecteds for different
p,s are shown in Fig.4.

Now,we consider, the two group model where the behavior of people in
group 2, (q21, q22), and the average acceptability of place in group 1, b = q11+q12

are fixed. We now use q12 ≡ q, 0 ≤ q ≤ b, as a parameter to study the effects
of the relative acceptability of people in group 2 on the reproductive number.
A large q implies that people in group 1 prefer their partners more from group
2 and are less interested in forming partners within their own group. In terms
of q,

R0(q) = δ(a11q
2
11+a22(b−q)2)+

√
((δ1 − a11q2

11) − (δ2 − a22(b − q)2))2 + (4a12a21q2
12)q

2),
(16)

with δ = 1/(δ1 + δ2).

3.1.3 Example

For the two group model (8) ,when we use equation (17) with the parameters,
S0

1 = 100, S0
2 = 200, β11 = 0.12, β12 = 0.08, β21 = 0.05, β22 = 0.1, μ =

0.015, γ1 = 0.1, γ2 = 0.05, q21 = 0.7,
we have Fig.5, and the dynamics of the susceptibles and infecteds for different
q,s are shown in Fig.6.
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(a) (b)

(c) (d)

Figure 1: S0
1 = 450, S1(0) = 450, I1(0) = 50, S0

2 = 200, S2(0) = 200, I2(0) =
350, c1 = 10, c2 = 5, μ = 0.015, q11 = 0.6, q12 = 1, q21 = 0.5, q22 = 0.2, γ1 =
0.1, γ2 = 0.05, β11 = 0.5, β12 = 0.4, β21 = 0.4, β22 = 0.2.
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(a) (b)

(c) (d)

Figure 2: S0
1 = 450, S1(0) = 450, I1(0) = 50, S0

2 = 200, S2(0) = 200, I2(0) =
350, c1 = 10, c2 = 5, μ = 0.015, q11 = 0.6, q12 = 1, q21 = 0.5, q22 = 0.2, γ1 =
0.1, γ2 = 0.05, β11 = 0.5, β12 = 0.5, β21 = 0.4, β22 = 0.2.
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(a) (b)

(c) (d)

Figure 3: S0
1 = 100, S0

2 = 200, β11 = 0.12, β12 = 0.08, β21 = 0.05, β22 = 0.1, μ =
0.015, γ1 = 0.1, γ2 = 0.05, q21 = 0.7, (a) : c1 = 10, c2 = 10, (b) : c1 = 10, c2 =
4, (c) : c1 = 8, c2 = 10, (d) : c1 = 4, c2 = 10.
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(a) (b)

(c) (d)

Figure 4: S0
1 = 100, S0

2 = 200, β11 = 0.12, β12 = 0.08, β21 = 0.05, β22 = 0.1, μ =
0.015, γ1 = 0.1, γ2 = 0.05, q12 = 0.7, q11 = 0.6, c1 = 10, c2 = 5.
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(a) (b)

(c) (d)

Figure 5: S0
1 = 100, S0

2 = 200, β11 = 0.12, β12 = 0.08, β21 = 0.05, β22 = 0.1, μ =
0.015, γ1 = 0.1, γ2 = 0.05, q21 = 0.7, (a) : c1 = 10, c2 = 10, (b) : c1 = 10, c2 =
4, (c) : c1 = 8, c2 = 10, (d) : c1 = 4, c2 = 10.
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(a) (b)

(c) (d)

Figure 6: S0
1 = 100, S0

2 = 200, β11 = 0.12, β12 = 0.08, β21 = 0.05, β22 = 0.1, μ =
0.015, γ1 = 0.1, γ2 = 0.05, q21 = 0.6, q22 = 0.4, c1 = 10, c2 = 5.


