Some Remarks on Multiplication and Comultiplication Modules

H. Ansari-Toroghy ¹, F. Farshadifar and M. Mast-Zohouri

Department of Mathematics, Faculty of Science
Guilan University, P. O. Box 1914, Rasht, Iran

Abstract

This paper deals with some results concerning multiplication and comultiplication modules over a commutative ring.

Mathematics Subject Classification: 13C99

Keywords: multiplication and comultiplication modules

1 Introduction

Throughout this paper R will denote a commutative ring with identity. Also for an R-module M, the notation $\text{grade}(I, M)$ will denote the grade I relative to M, where R is a commutative Noetherian ring and I is an ideal of R. We will follow the terminology concerning $\text{grade}(I, M)$ and Cohen-Macaulay modules from [4].

An R-module M is called a multiplication module if for every submodule N of M there exists an ideal I of R such that $N = IM$.

An ideal I of R is said to be second (see [7]) if for each $r \in R$, we have $rI = 0$ or $rI = I$.

A submodule N of an R-module M is said to be completely irreducible (see [6]) if $N = \bigcap_{i \in I} N_i$, where $\{N_i\}_{i \in I}$ is a family of submodules of M, then $N = N_i$ for some $i \in I$.

A submodule N of an R-module M is said to be large (see [1]) if for every non-zero submodule L of M, $N \cap L \neq 0$.

¹ansari@guilan.ac.ir
An R-module M is said to be cocyclic (see [6]) if $\text{Soc}(M)$ is large and a simple submodule of M.

The sets $\text{Ass}_R(M)$ and $\text{Supp}_R(M)$ are defined as

$$\text{Ass}_R(M) = \{ P \in \text{Spec}(R) : P = (0:R \ x), \text{for some non-zero element } x \text{ of } M \};$$

$$\text{Supp}_R(M) = \{ P \in \text{Spec}(R) : P \supseteq (0:R \ x), \text{for some non-zero element } x \text{ of } M \}.$$

In [2], the dual notion of multiplication modules was introduced and the first properties of this class of modules have been considered. We recall that M is a comultiplication module (see [2]) if for every submodule N of M there exists an ideal I of R such that $N = (0 :_M I)$. Also it is shown that (see [2, 3.7]) M is a comultiplication module if and only if for each submodule N of M, $N = (0 :_M \text{Ann}_R(N))$.

2 Main results

Remark 2.1 (see [3]). Let M be a comultiplication R-module. Then

(a) If P is a maximal ideal of R and $(0 :_M P) \neq 0$, then $(0 :_M P)$ is simple.

(b) If B is an ideal of R such that $(0 :_M B) = 0$, then for every element $m \in M$, there exists an element b of B such that $m = bm$.

Theorem 2.2. Let M be a faithful multiplication R-module. Then we have the following.

(a) If R is a Noetherian ring and I is an ideal of R, then $\text{grade}(I, M) = \text{grade}(I, R)$.

(b) If R is a Noetherian ring, then $\text{Ass}_R(M) = \text{Ass}_R(R)$.

(c) If M is a finitely generated semisimple module, then R is a semisimple ring.

Proof. (a) First note that since R is Noetherian ring, M is a finitely generated module by [5]. It is enough to show that every sequence in I is an R-sequence if and only if it is an M-sequence. To see this, let I be an ideal of R and let $X := x_1, x_2, \ldots, x_n$ be an R-sequence in I. By [5, 3.1], $XR \neq R$ if and only if $XM \neq M$. Now assume that $x_i m \in (x_1, \ldots, x_{i-1})M$, where $1 \leq i \leq n$ and $m \in M$. Since M is a multiplication R-module, there exists an ideal J of R such that $Rm = JM$. Thus $x_i JM \subseteq (x_1, \ldots, x_{i-1})M$. Hence $x_i J \subseteq (x_1, \ldots, x_{i-1})$ by
[5, 3.1]. Therefore, \(J \subseteq (x_1, \ldots, x_{i-1}) \). So \(Rm = JM \subseteq (x_1, \ldots, x_{i-1})M \). This implies that \(m \in (x_1, \ldots, x_{i-1})M \). It follows that \(X \) is an \(M \)-sequence. The reverse implication is proved similarly.

(b) Let \(P \in \text{Ass}_R(M) \). Then \(P = (0 :_R m) \) for some \(m \in M \). Since \(M \) is a multiplication \(R \)-module, there exists an ideal \(I \) of \(R \) such that \(Rm = IM \). Thus \(P = (0 :_R IM) \). Since \(M \) is faithful, \(P = (0 :_R I) \). Since \(R \) is Noetherian there exists \(a \in I \) such that \(P = (0 :_R a) \). Thus \(\text{Ass}_R(M) \subseteq \text{Ass}_R(R) \).

Corollary 2.3. Let \(R \) ba a Noetherian ring and let \(M \) be a faithful multiplication \(R \)-module. Then \(M \) is a Cohen-Macaulay \(R \)-module if and only if \(R \) is a Cohen-Macaulay ring.

Theorem 2.4. Let \(U \) be a comultiplication \(R \)-module. Then

(a) If \(N \) is a finitely cogenerated submodule of \(U \), then there exists a finitely generated ideal \(I \) of \(R \) such that \(N = (0 :_U I) \).

(b) \(\sum_{f \in M^*} \text{Im} f = (0 :_U \text{Ann}_R(M^*)) \), where \(M^* = \text{Hom}_R(M, U) \).

(c) \(\text{Max}(R) \cap A(U) \subseteq \text{Ass}_R(U) \), where

\[
A(U) = \{ P \in \text{Spec}(R) : (0 :_U P) \neq 0 \}.
\]

(d) \(\text{Supp}_R(U) \subseteq A(U) \).

Proof. (a) Let \(L \) be a completely irreducible submodule of \(U \). Then \(L = (0 :_U I) = \cap_{a \in I} (0 :_U a) \), where \(I = \text{Ann}_R(L) \). Thus \(L = (0 :_U a) \) for some \(a \in I \). Now since \(N \) is finitely cogenerated, \(N = \bigcap_{i=1}^n L_i \), where \(L_i \) is a completely irreducible submodule of \(U \) for each \(i \). Therefore, \(N = \bigcap_{i=1}^n (0 :_U a_i) \) for some \(a \in \text{Ann}_R(L_i) \). Thus \(N = (0 :_U I) \), where \(I = Ra_1 + Ra_2 + \ldots + Ra_n \).

(b) Let \(V = \sum_{f \in M^*} \text{Im} f \). Then \(V \) is a submodule of \(U \), and hence \(V = (0 :_U I) \) for some ideal \(I \) of \(R \). Let \(\theta \in M^* \). Then \(\theta(M) \subseteq V \). This implies that
Thus \(I \theta(M) = 0 \). Thus \((I \theta)M = 0\). It follows that \(I \theta = 0 \). Hence \(I \subseteq \text{Ann}_R(M^*) \) and \((0 :_U \text{Ann}_R(M^*)) \subseteq V\). On the other hand, for any \(\phi \in M^* \),

\[
\phi(\text{Ann}_R(M^*)M) = \text{Ann}_R(M^*)\phi(M) = (\text{Ann}_R(M^*)\phi)M = 0
\]

Thus \(\text{Ann}_R(M^*)\phi(M) = 0 \). It follows that \(V \subseteq (0 :_U \text{Ann}_R(M^*)) \) as desired.

(c) Suppose that \(P \in \text{Max}(R) \cap A(U) \). Then \((0 :_U P) \neq 0 \) and it is a minimal submodule of \(U \) by Remark 2.1 (a). Hence there exists \(0 \neq m \in U \) such that \((0 :_U P) = Rm \) so that \(P \subseteq \text{Ann}_R(Rm) \). Since \(P \) is maximal and \(0 \neq m, P = \text{Ann}_R(Rm) \) as desired.

(d) Suppose that \(P \in \text{Supp}(U) \). Then there exists \(0 \neq m \in U \) such that \((0 :_R m) \subseteq P\). Assume that \((0 :_U P) = 0 \). Then by Remark 2.1 (b), there exists \(p \in P \) such that \((1 - p)m = 0\). Hence \((1 - p) \in (0 :_R m) \subseteq P\), a contradiction. Therefore, \((0 :_U P) \neq 0\) as desired.

Theorem 2.5.

(a) \(M \) be a non-zero multiplication \(R \)-module and let \(S \) be a second ideal of \(R \) such that \(SM = M \). Then \(M \) is a cocyclic \(R \)-module.

(b) Let \(R \) be a ring which is not a filed and let \(S_1 \) and \(S_2 \) be simple \(R \)-modules such that \(S_1 + S_2 \) is faithful. Then \(S_1 + S_2 \) is a comultiplication \(R \)-modules.

(c) Let \(R \) be a Noetherian ring and let \(M \) be a faithful divisible multiplication \(R \)-module. Then \(R \) is a semi-local ring.

Proof. (a) By [6], \(M \) has a proper completely irreducible submodule \(L \). Since \(M \) is a multiplication \(R \)-module, \(L = IM \) for some ideal \(I \) of \(R \). Thus \(L = IM = SIM \). Since \(S \) is second, \(SI = 0 \) or \(SI = S \). Hence \(L = 0 \) or \(L = M \). Since \(L \) is proper, \(L = 0 \). Therefore, \(M \) is a cocyclic \(R \)-module.

(b) Let \(M = S_1 + S_2 \). It is clear that \(S_1 \subseteq (0 :_M \text{Ann}_R(S_1)) \). Suppose that \(m \in (0 :_M \text{Ann}_R(S_1)) \). Then \(m = m_1 + m_2 \) where \(m_1 \in S_1 \) and \(m_2 \in S_2 \) and \(m\text{Ann}_R(S_1) = 0 \). If \(m \notin S_1 \), then \(m_2 \notin S_1 \). Since \(m_2\text{Ann}_R(S_1) = 0 \), we have \(m_2 \in S_2 \cap (0 :_M \text{Ann}_R(S_1)) \). This in turn implies that \(m_2 = 0 \) or \(S_2 \subseteq (0 :_M \text{Ann}_R(S_1)) \). Hence \(M = S_1 + S_2 \subseteq (0 :_M \text{Ann}_R(S_1)) \). Thus \(\text{Ann}_R(S_1) = 0 \). But this is a contradiction, because \(R \) is not a filed. Therefore, \(m \in S_1 \) as desired.

(c) Let \(m \) be a maximal ideal of \(R \). Since \(R \) is Noetherian, \(M \) is finitely generated by [5]. Thus by [5, 3.1], \(mM \neq M \). Now since \(M \) is divisible, \(m \in Zd(R) = \bigcup_{P \in \text{Ass}(R)} P \). Thus \(m \in \text{Ass}(R) \). This implies that \(R \) has a finite
Remarks on multiplication and comultiplication modules

number of maximal ideals and the proof is completed.

References

Received: March 16, 2008