Idealization and Primary Decomposition

S. Heidari, M. J. Nikmehr and R. Nikandish

Department of Mathematics, K. N. Toosi University of Technology
P.O. Box 16315-1618, Tehran, Iran
nikmehr@kntu.ac.ir

Abstract

Let R be a commutative ring with identity and M an R-module. In this paper, we study the primary decomposition of the ideals of the ring $R(+M)$.

Mathematics Subject Classification: 13B99; 13A15

Keywords: Idealization; Primary decomposition

1 Introduction and preliminaries

Throughout this paper, let R denote a commutative ring with identity and all modules are assumed to be unitary. Let M be an R-module; the idealization $R(+M)$ (also called the trivial extension) introduced by Nagata in [5], and several authors have extended this concept, see for example [1]. Recall that $R(+M)$ with addition

$$(r_1(+m_1) + (r_2(+m_2)) = (r_1 + r_2(+m_1) + m_2),$$

and multiplication

$$(r_1(+m_1)(r_2(+m_2)) = (r_1r_2(+r_1m_2 + r_2m_1),$$

is a commutative ring with identity, called the idealization of M. Note that R naturally embeds into $R(+M)$ via $r \rightarrow r(+)0$, if N is a submodule of M, then $0(+)N$ is an ideal of $R(+M)$, $0(+)M$ is a nilpotent ideal of $R(+M)$ of index 2, every ideal that contains $0(+)M$ has the form $I(+)M$ for some ideal I of R, and every ideal that is contained in $0(+)N$ has the form $0(+)K$ for some submodule K of N. Some basic results on idealization can be found in [3].
In this paper, we focus on primary decomposition of ideals of the ring $R(+)M$. Let Q be an ideal of R. We say that Q is a primary ideal of R precisely if $Q \subseteq R$, that is Q is a proper ideal of R and whenever $a, b \in R$ with $ab \in Q$ but $a \notin Q$ then there exists $n \in N$ such that $b^n \in Q$ equivalently, if $a, b \in R$ and $ab \in Q$ imply $a \in Q$ or $b \in \sqrt{Q}$ where \sqrt{Q} denotes radical of Q. Let I be a proper ideal of R. A primary decomposition of I is an expression for I as intersection of finitely many primary ideals of R, such a primary decomposition $I = Q_1 \cap Q_2 \cap \ldots \cap Q_n$ with $\sqrt{Q_i} = p_i$ for $i = 1 \ldots n$ of I, (usually it is said that Q_i is a p_i-primary ideal, for all $i = 1 \ldots n$, whenever we use this type of terminology) is said to be a minimal primary decomposition of I precisely when $p_1 \ldots p_n$ are n different prime ideals of R, and for all j with $1 \leq j \leq n$, $\cap_{i=1,i\neq j}^n Q_i$ is not contained in Q_j. We say that I is decomposable ideal of R if it has a primary decomposition.

1.1 Main Results

Primary decomposition is a basic problem in the studying of commutative rings. Here, we study primary decomposition of ideals of the ring $R(+)M$.

Let M be an R-module. It is well-known that any prime (maximal) ideal of the ring $R(+)M$ is of the form $p(+)M$ such that p is a prime (maximal) ideal of R.

Theorem 1.1 Let I be an ideal of R. Then I is a decomposable ideal of R if and only if $I(+)M$ is a decomposable ideal of $R(+)M$.

Proof. Suppose that I is a decomposable ideal of R, and $I = Q_1 \cap Q_2 \cap \ldots \cap Q_n$ is a primary decomposition of I in which Q_i is a p_i-primary for all i. Then, $I(+)M = (Q_1 \cap \ldots \cap Q_n)(+)M = (Q_1(+)M) \cap \ldots \cap (Q_n(+)M)$.

Let $(a(+)m_1)(b(+)m_2) \in Q_i(+)M$ and $a(+)m_1 \notin Q_i(+)M$. Thus $ab(+)am_2 + bm_1 \in Q_i(+)M$ and $a \notin Q_i$, so there exists $n \in N$ such that $b^n \in Q_i$, because Q_i is a primary ideal of R. Now, $(b(+)m_2)^n = (b^n(+)nm_2b^{n-1}) \in (Q_i(+)M)$, and so $Q_i(+)M$ is a primary ideal of $R(+)M$. An straightforward proof shows that $\sqrt{Q_i(+)M} \subseteq p_i(+)M$. Also if $t(+)m \in p_i(+)M$, then $t \in p_i = \sqrt{Q_i}$, and it means that $t^{k(+)km} = (t(+)m)^k \in Q_i(+)M$, for some positive integer k. Thus $t(+)m \in \sqrt{Q_i(+)M}$, and hence $\sqrt{Q_i(+)M} = p_i(+)M$. So $I(+)M$ is a decomposable ideal of ring $R(+)M$. Conversely, let $I(+)M$ have a primary decomposition of the form $I(+)M = Q_1' \cap \ldots \cap Q_n'$ with $\sqrt{Q_i} = p_i(+)M$, in which Q_i's are $p_i(+)M$-primary ideals of the $R(+)M$. The well-known isomorphism $R \cong R(+)M/0(+)M$ gives a one-to-one correspondence between ideals of R and ideals of $R(+)M$ that contains $0(+)M$. Clearly, $0(+)M \subseteq I(+)M \subseteq Q_i'$. So we have $Q_i = Q_i(+)M$ in which every Q_i is a p_i-primary ideal of R. Hence $I(+)M = (Q_1(+)M) \cap (Q_2(+)M) \cap \ldots \cap (Q_n(+)M)$.

idealization and primary decomposition

\[(Q_n(+M) = (Q_1 \cap Q_2 \cap \ldots \cap Q_n)(+)M, \text{ and so } I = Q_1 \cap Q_2 \cap \ldots \cap Q_n, \text{ as desired.} \]

Corollary 1.2 If \(Q_1, Q_2, \ldots, Q_n \). \((n \geq 1) \) are \(p \)-primary ideals of \(R \), then
\[\cap_{i=1}^n(Q_i(+M) \text{ is a } p(+M) \text{-primary ideal of } R(+)M. \]

Proof. It is clear by Theorem 1 and [6, lemma 4.13].

Note that if a proper ideal \(I(+)M \) of \(R(+)M \) has a primary decomposition with \(t \) terms which is not minimal, then \(I(+)M \) has a minimal primary decomposition with fewer than \(t \) terms. Minimal primary decompositions have certain uniqueness properties.

The following corollary follows from Theorem 1, and [6, Theorem 4.17].

Corollary 1.3 Let \(I \) be a decomposable ideal of \(R \), and let \(I = Q_1 \cap Q_2 \cap \ldots \cap Q_n \) with \(\sqrt{Q_i} = p_i \) for \(i = 1 \ldots n \), be a minimal primary decomposition of \(I \). Let \(P \in Spec(R) \). Then \(I(+)M \) has primary decomposition and the following statements are equivalent:

(i) \(P(+M) = P_i(+M) \), for some \(i \) with \(1 \leq i \leq n \);

(ii) There exists \(a(+)m \in R(+)M \) such that \((I(+)M:a(+)m) \) is \(P(+M) \)-primary;

(iii) There exists \(a(+)m \in R(+)M \) such that \(\sqrt{(I(+)M : a(+)m)} = P(+M) \).

Example 1.4 Let \(R = K[X,Y] \) be a ring of polynomials over the field \(K \) in indeterminates \(X, Y \) and \(M = K[X,Y] \). Consider the ideal \(I(+)M = (XY, Y^2)(+)M \) of \(R(+)M \). Theorem 1 shows that \(Q(+)M = (X, Y^2)(+)M \) and \(P(+M) = (Y)(+)M \) are primary ideals of the ring \(R(+)M \). One can easily check that \(I(+)M = (Q(+)M \cap (P(+)M) \). So \(I(+)M \) is a decomposable ideal of \(R(+)M \).

An ideal \(H \) of the idealization ring \(R(+)M \) is said to be homogeneous if \(H = I(+)N \), for some ideal \(I \) of \(R \) and a submodule \(N \) of \(M \). In this case, \(I(+)N = (R(+)M)(I(+)N) = I(+)IM + N \) gives \(IM \subseteq N \).

Theorem 1.5 Let \(M \) be a finitely generated divisible module over a Noetherian integral domain \(R \). Then, \(R(+)M \) is Noetherian.

proof. Following [2, Theorem 3.3], if \(R \) is an integral domain, then every ideal of \(R(+)M \) is homogeneous if and only if \(M \) is divisible. Now consider the chain \(I_1(+)N(1) \subseteq I_2(+)N(2) \subseteq \ldots \) of ideals of \(R(+)M \). Then we have two chains \(I_1 \subseteq I_2 \subseteq \ldots \) of ideals of \(R \), and \(N_1 \subseteq N_2 \subseteq \ldots \) of submodule of \(M \). Since \(R \) is a Noetherian ring, there exists a positive integer \(n \) such that \(I_n = I_{n+i} \), for every \(i \geq 1 \) and since \(M \) is a Noetherian module, there exists a positive integer \(m \) such that \(N_m = N_{m+i} \), for every \(i \geq 1 \). Set \(t = \text{max}\{m, n\} \). Hence \(I_t = I_{t+i} \) and \(N_t = N_{t+i} \). Therefore \(I_t(+N(t)) = I_{t+i}(+)N_{(t+i)} \), for every \(i \geq 1 \). Hence \(R(+)M \) is Noetherian.
Corollary 1.6 Let R be a Noetherian integral domain. If M is a finitely generated divisible R-module, then every proper ideal of $R(+)M$ has a primary decomposition.

Proof. The result follows from Theorem 3, and [6].

The converse of the preceding theorem is presented in the following theorem.

Theorem 1.7 Let $R(+)M$ be Noetherian. Then R is a Noetherian ring and M is a Noetherian R-module.

Proof. Suppose that $N_1 \subseteq N_2 \subseteq \ldots$ is a chain of submodules of M. Then this chain induces the chain $0(+)N_1 \subseteq 0(+)N_2 \subseteq \ldots$ of ideals of $R(+)M$, so there exists $t \in N$ such that $0(+)N(t) = 0(+)N_1$, for every $i \geq 1$. Thus $N_i = N(t+i)_i$, for every $i \geq 1$. So M is a Noetherian R-module. Since $R \cong R(+)M/0(+)M$ thus R is a Noetherian ring.

Example 1.8 An example of a ring $R(+)M$ in which every ideal is homogeneous is $Z(+)Q$, where Q is the field of rational numbers.

Following [4], a submodule Q of M is said to be a primary submodule of M if $M \neq Q$ and for each zero-divisor a of M/Q, there exists a positive integer n such that $a^n(M/Q) = 0$.

Clearly, if Q is a primary submodule of M, then $P := \sqrt{Ann_R(M/Q)}$ is a prime ideal in R, and in this case, we say that Q is a P-primary submodule of M. Let M be a module over a commutative ring R, and G a proper submodule of M. A primary decomposition of G in M is an expression for G as an intersection of finitely many primary submodules of M. We say that G is a decomposable submodule of M precisely when it has a primary decomposition in M. If we define $r_i(r(+)m) = r_1r(+)r_1m$, then $R(+)M$ will have an algebra structure.

Theorem 1.9 Let N be a decomposable submodule of M. Then $R(+)N$ is a decomposable submodule of R-module $R(+)M$.

Proof. Let $N = Q_1 \cap Q_2 \cap \ldots Q_n$ be a decomposition of N in which every Q_i is a p_i-primary ideal. It is easy to check that

$$R(+)N = R(+)Q_1 \cap \ldots \cap Q_n = (R(+)Q_1) \cap \ldots \cap (R(+)Q_n).$$

First we know that $R(+)M \neq R(+)Q_i$, because $M \neq Q_i$. Second if $a \in Zdv_R(R(+)M/R(+)Q_i)$, then there exists $r(+)m \in R(+)M - R(+)Q_i$, such that $a(r(+)m + R(+)Q_i) = 0$. Hence $ar(+)am \in R(+)Q_i$, and so $am \in Q_i$ and $m \notin Q_i$; therefore, $a^n(M/Q_i) = 0$, for some positive integer n. Let $t(+)m \in R(+)M$. Then $a^n(t(+)m) = a^n(t)am \in R(+)Q_i$, and hence $a^n(R(+)M/R(+)Q_i) = 0$. It is clear that $\sqrt{ann(R(+)M/R(+)Q_i)} = p_i$; therefore, $R(+)Q_i$ is a p_i-primary submodule of $R(+)M$.

Example 1.10 Let \(R = K[X, Y] \) be a ring of polynomials over the field \(K \) with indeterminates \(X, Y \), and \(K[X, Y](+)K[X, Y] \) be idealization of \(R \). Then \(T = K[X, Y](+)K[X, Y] \) \((X^3, XY)\) is a decomposable submodule of \(K[X, Y](+)K[X, Y] \) and
\[
K[X, Y](+)K[X, Y] = (K[X, Y](+)K[X, Y]) \cap (K[X, Y](+)K[X, Y])
\]
is a minimal primary decomposition of \(T \).

References

Received: March, 2009