On Stratified Domination in Prisms

Süleyman Ediz

Department of Mathematics
Institute of Sciences, Yüzüncü Yil University
65080, Van, Turkey
ediz571@gmail.com

Abstract

A graph G is 2-stratified if its vertex set is partitioned into two nonempty classes (each of which is a stratum or a color class). We color the vertices in one color class red and the other class blue. Let S be a 2-stratified graph with one fixed blue vertex v specified. We say that S is rooted at v. The S-domination number of a graph G is the minimum number of red vertices of G in a red-blue coloring of the vertices of G such that for every blue vertex v of G, there is a copy of S in G rooted at v. In this paper we get a new result that $\gamma_s(G) = 2n$ ($n \neq 2k+1$ and $n \neq 2k-1$) when G is a prism $C_n \times K_2$ ($n \geq 3$) and S is a 2-stratified cycle $C_{2k+1}(k \geq 2)$ rooted at a blue vertex.

Mathematics Subject Classification: 05C69

Keywords: 2-stratified graphs, stratified domination, prism

1. Introduction

In this paper we continue the study of stratification and domination in graphs started by Chartrand et al. [1,2] and studied further in [6]. A graph $G = (V,E)$ together with a fixed partition of its vertex set V into nonempty subsets is called a stratified graph. If the partition is $V = \{V_1, V_2\}$, then G is a 2-stratified graph and the set V_1 and V_2 are called the strata or color classes of G. We ordinarily color the vertices of V_1 red and the vertices of V_2 blue. In [13], Rashidi studied a number of problems involving stratified graphs.

Let $G = (V,E)$ be a graph with vertex set V and edge set E, and let $S \subseteq V$. The set S is a dominating set (DS) if every vertex in $V \setminus S$ is adjacent to at least one vertex of S. The domination number of G, denoted by $\gamma(G)$, is the minimum cardinality of a dominating set. A dominating set of G of cardinality of $\gamma(G)$ is called $\gamma(G)$-set. The set S is a total dominating set (TDS) if every vertex in V is adjacent to at least one vertex of S. The total
domination number of G, denoted by $\gamma_l(G)$, is the minimum cardinality of a total dominating set. The set S is a restrained dominating set (RDS) if every vertex not in S is adjacent to a vertex in S and to a vertex in $V \setminus S$. The restrained domination number of G, denoted by $\gamma_r(G)$, is the minimum cardinality of a restrained dominating set. If S is simultaneously a TDS and RDS, then S is a total restrained dominating set (TRDS) of G. The total restrained domination number of G, denoted by $\gamma_{tr}(G)$, is the minimum cardinality of a total restrained dominating set. The set S is a k-dominating set if every vertex not in S is adjacent to at least k vertices in S. The k-domination number of G, denoted by $\gamma_k(G)$, is the minimum cardinality of a k-dominating set. For a graph $G = (V, E)$ and a subset $S \subseteq V$, we say that a vertex $v \in V$ is total double dominated by S if $|N(v) \cap S| \geq 2$. If every vertex of V is total double dominated by S, then we call S a total double dominating set (TDDS) of G. The total double domination number $\gamma_{2d}(G)$ is the minimum cardinality of a TDDS of G. The independent domination number of G, denoted by $i(G)$, is the minimum cardinality of a dominating set in G that is independent. An independent dominating set of G of cardinality $i(G)$ is called an $i(G)$-set. See [4,5,7,8,9,10,11,12] related studies about stratified domination.

More precisely, let S be a 2-stratified graph with one fixed blue vertex v specified. We say that S is rooted at the blue vertex v. An S-coloring of a graph G is defined in [2] to be a red-blue coloring of the vertices of G such that every blue vertex v of G belongs to a copy of S (not necessarily induced in G) rooted at v. The S-domination number of G $\gamma_S(G)$ of G is the minimum number of red vertices of G in S-coloring of G. In [1,2], an S-coloring of G that colors $\gamma_S(G)$ vertices red is called a γ_S-coloring of G. The set of red vertices in a γ_S-coloring is called a γ_S-set. If G has order n and G has no copy of S, then certainly $\gamma_S(S) = n$.

For notation and graph theory terminology we follow in general [3]. A cycle on n vertices is denoted by C_n and a path on n vertices by P_n. A claw is the graph $K_{1,3}$. A prism is the cartesian product $G = C_n \times K_2$, $n \geq 3$, of a cycle C_n and K_2. Throughout this paper, our prism G consist of two n-cycles ($v_1, v_2, \ldots, v_n, v_1$ and $u_1, u_2, \ldots, u_n, u_1$ with v_iu_i an edge for all $i = 1, 2, \ldots, n$) and two $n + 2$-cycles ($v_1, u_1, v_2, \ldots, u_n, v_n, v_1$) and $(u_1, v_1, v_2, \ldots, v_n, u_n, u_1$).

Our aim is to determine the S-domination number of a prism when S is a 2-stratified cycle C_2 and 2-stratified cycle $C_{2k+1}(k \geq 2)$.

2 Known Results

2.1 2-stratified claws

There are eight possible choices for a 2-stratified claw rooted at a blue vertex v. These graphs are shown in Fig. 1. The “claw domination” for prisms has been studied in [2].

Theorem 1 ([2]). For $n \geq 3$, let G be the prism $C_n \times K_2$. Then,
On stratified domination in prisms

2357

Figure 1: The distinct 2-stratified claws rooted at a blue vertex v

(a) $\gamma_{Y_1}(G) = 2 \left\lfloor \frac{n}{4} \right\rfloor$
(b) $\gamma_{Y_2}(G) = 3 \left\lfloor \frac{n}{4} \right\rfloor$
(c) $\gamma_{Y_3}(G) = n$
(d) $\gamma_{Y_4}(G) = 2 \left\lfloor \frac{n}{5} \right\rfloor$ if $n \equiv 0, 3, 4 \mod 5$, $n \equiv 2, 6 \mod 10$ or $\gamma_{Y_4}(G) = 2 \left\lfloor \frac{n}{5} \right\rfloor - 1$ if $n \equiv 1, 7 \mod 10$.
(e) $\gamma_{Y_5}(G) = 2 \left\lfloor \frac{n}{2} \right\rfloor$.
(f) $\gamma_{Y_6}(G) = 2$ if $n = 3$ or $n \equiv 2, 6 \mod 10$ or $\gamma_{Y_6}(G) = 2 \left\lfloor \frac{n}{4} \right\rfloor + i$ if $n \geq 4$ and $n \equiv i \mod 4$.
(g) $\gamma_{Y_7}(G) = 2 \left\lceil \frac{n}{2} \right\rceil$.

2.2 2-stratified C_4

Let X be a 2-stratified C_4 rooted at a blue vertex v. The five possible choices for the graph X are shown in Fig. 2. (The red vertices in Fig.2. are darkened.) The X-domination number of a prism when X is a 2-stratified cycle C_4 was determined in [6].

Theorem 2 ([6]). For $n \geq 3$, let G be a prism $C_n \times K_2$. Then,

(a) $\gamma_{X_1}(G) = \left\lceil \frac{n}{2} \right\rceil + \left\lceil \frac{n}{4} \right\rceil - \left\lfloor \frac{n}{4} \right\rfloor$.
(b) $\gamma_{X_1}(G) = 2n$, unless $n = 4$ in which case $\gamma_{X_1}(G) = 2$.
(c) $\gamma_{X_3}(G) = n$.
Figure 2: The five 2-stratified C_4

(d) $\gamma_{X_4}(G) = \left\lceil \frac{n}{3} \right\rceil$.
(e) $\gamma_{X_5}(G) = \left\lceil \frac{4n}{3} \right\rceil$.

The relationship between the X-domination numbers of a prism and domination type parameters is also determined in [11]. Note that in all but one of the five possible choices for a 2-stratified C_4 (see Fig. 2), the red vertices form a dominating set in the graph.

Theorem 3 ([6]). For $n \geq 3$, let G be a prism $C_n \times K_2$. Then,
1. $\gamma_{X_1}(G) = \gamma(G)$.
2. $\gamma_{X_4}(G) = \gamma_2(G)$.
3. $\gamma_{X_4}(G) = \gamma_t(G) + 1$ if $n \equiv 1(\text{mod} 6)$; otherwise, $\gamma_{X_4}(G) = \gamma_t(G)$.
4. $\gamma_{X_5}(G) = \gamma^{t}_{\times 2}(G) - 1$ if $n \equiv 2(\text{mod} 6)$; otherwise $\gamma_{X_5}(G) = \gamma^{t}_{\times 2}(G)$.

3. Main Results

3.1 2-stratified C_5

Let S be a 2-stratified C_5 rooted at a blue vertex v. The nine possible choices for the graph S are shown in Fig.3. (The red vertices in Fig.3. are darkened.)

3.2 Stratification in prisms

In this section, we determine the S-domination number of a prism when S is a 2-stratified cycle C_5 and a 2-stratified cycle C_{2k+1}.

Now we state two propositions which its’ proofs obvious. See Fig.4. and Fig.5.

Proposition 4. Let G be the prism $C_3 \times K_2$ and S_i $(i = 1, 2, ..., 9)$ be one of the 2-stratified C_5 rooted at a blue vertex v are shown Fig.3. Then,

(a) $\gamma_{S_1}(G) = \gamma(G) = \gamma_t(G) = 2$.
(b) $\gamma_{S_2}(G) = \gamma_t(G) = \gamma_{tr}(G) = 2$.
(c) $\gamma_{S_3}(G) = \gamma_t(G) = \gamma_{tr}(G) = 2$.
(d) $\gamma_{S_4}(G) = 6$.
Proposition 5. Let G be the prism $C_5 \times K_2$ and S_i ($i = 1, 2, ..., 9$) be one of the 2-stratified C_5 rooted at a blue vertex v are shown Fig.3. Then,

(a) $\gamma_{S_1}(G) = 10$.
(b) $\gamma_{S_2}(G) = 10$.
(c) $\gamma_{S_3}(G) = 10$.
(d) $\gamma_{S_4}(G) = 10$.
(e) $\gamma_{S_5}(G) = 10$.
(f) $\gamma_{S_6}(G) = 10$.
(g) $\gamma_{S_7}(G) = \gamma_{tr} = 6$.
(h) $\gamma_{S_8}(G) = \gamma_t(G) = 6$.
(i) $\gamma_{S_9}(G) = 8$.

Notice that only $C_3 \times K_2$ and $C_5 \times K_2$ prisms contain subgraphs which isomorphic to C_5. Thus $\gamma_{C_5}(C_n \times K_2) = 2n, (n \neq 3, 5)$ can be written. Now we state our main result which generalize to find 2-stratified C_{2k+1}-domination number ($k \geq 2$) for a prism of $C_n \times K_2, (n \geq 3)$.

Theorem 6. For $n \geq 3$, let G be a prism $C_n \times K_2 (n \neq 2k+1, n \neq 2k-1)$
Figure 4: 2-stratified C_5 domination in $C_3 \times K_2$

Figure 5: 2-stratified C_5 domination in $C_5 \times K_2$
and S be one of a 2-stratified C_{2k+1} rooted at a blue vertex v. Then $\gamma_S(G) = 2n$.

Proof: There are only three ways to get a cycle graph from a prism $C_n \times K_2$.

Case 1: For $i \geq 1$ and $m \geq i$, a cycle of $v_i v_{i+1} \ldots v_m u_m \ldots u_{i+1} u_i v_i$ has $2m - 2i + 2$ length which is not isomorphic to $C_{2k+1}(k \geq 2)$.

Case 2: A cycle of $v_1 v_2 \ldots v_n v_1$ or a cycle of $u_1 u_2 \ldots u_n u_1$ which have n length and isomorphic to C_n. For $n \neq 2k + 1$, these two cycle graphs are not isomorphic to the cycle graph $C_{2k+1}(k \geq 2)$.

Case 3: A cycle of $v_1 u_1 \ldots u_n v_1$ or a cycle of $u_1 v_1 \ldots v_n u_1 u_1$ which have $n + 2$ length and isomorphic to C_{n+2}. For $n + 2 \neq 2k + 1 (n \neq 2k - 1)$, these two cycle graphs are not isomorphic to the cycle graph $C_{2k+1}(k \geq 2)$.

References

Received: May, 2009