On Closed Maps in BiČech Closure Spaces

Chawalit Boonpok

Department of Mathematics
Faculty of Science
Mahasarakham University
Mahasarakham 44150, Thailand
chawalit.boonpok@hotmail.com

Abstract

The purpose of this paper is to study and investigate some properties of closed maps in biČech closure spaces.

Mathematics Subject Classification: 54A01

Keywords: Čech closure operator, Čech closure space, biČech closure space, closed map

1 INTRODUCTION

Čech closure spaces were introduced by E. Čech [1] and then studied by many authors, see e.g. [3, 4, 6, 7]. In Čech’s approach the operator satisfies idempotent condition among Kuratowski axioms. This condition need not hold for every subset of X. When this condition is also true, the operator becomes topological closure operator. Thus the concept of closure space is the generalization of a topological space. BiČech closure spaces were introduced by K. Chandrasekhara Rao, R. Gowri and V. Swaminathan [2]. In this paper we study and investigate some properties of closed maps in biČech closure spaces.

2 PRELIMINARIES

An operator $u : P(X) \rightarrow P(X)$ defined on the power set $P(X)$ of a set X satisfying the axioms:

(C1) $u\emptyset = \emptyset$,

(C2) $A \subseteq uA$ for every $A \subseteq X$,
Whenever

\[F \]

to be
closed
following properties:

\[\text{A structure} \]
\[\text{continuous} \]
to be
projections
\[\pi \]
product of sets
\[X \]
of
\[\text{biČech closure operator} \]
\[A \]
each
\[u \]
closed if
\[\pi \]
\[I \]
\[\alpha \]
\[\beta \]
closure operator
\[u \]
in a set \(X \) is called idempotent if \(uA = uuA \) for all \(A \subseteq X \).

A subset \(A \) is closed in the closure space \((X, u) \) if \(uA = A \) and it is open if its complement is closed. The empty set and the whole space are both open and closed.

A closure space \((Y, v) \) is said to be a subspace of \((X, u) \) if \(Y \subseteq X \) and \(vA = uA \cap Y \) for each subset \(A \subseteq Y \). If \(Y \) is closed in \((X, u) \), then the subspace \((Y, v) \) of \((X, u) \) is said to be closed too.

Let \((X, u) \) and \((Y, v) \) be closure spaces. A map \(f : (X, u) \to (Y, v) \) is said to be continuous if \(f(uA) \subseteq vf(A) \) for every subset \(A \subseteq X \).

One can see that a map \(f : (X, u) \to (Y, v) \) is continuous if and only if \(uf^{-1}(B) \subseteq f^{-1}(vB) \) for every subset \(B \subseteq Y \).

Clearly, if \(f : (X, u) \to (Y, v) \) is continuous, then \(f^{-1}(F) \) is a closed subset of \((X, u) \) for every closed subset \(F \) of \((Y, v) \).

Let \((X, u) \) and \((Y, v) \) be closure spaces. A map \(f : (X, u) \to (Y, v) \) is said to be closed (resp. open) if \(f(F) \) is a closed (resp. open) subset of \((Y, v) \) whenever \(F \) is a closed (resp. open) subset of \((X, u) \).

The product of a family \(\{(X_\alpha, u_\alpha) : \alpha \in I\} \) of closure spaces, denoted by \(\prod_{\alpha \in I} (X_\alpha, u_\alpha) \), is the closure space \((\prod_{\alpha \in I} X_\alpha, u) \) where \(\prod_{\alpha \in I} X_\alpha \) denotes the cartesian product of sets \(X_\alpha, \alpha \in I \), and \(u \) is the closure operator generated by the projections \(\pi_\alpha : \prod_{\alpha \in I} X_\alpha \to X_\alpha, \alpha \in I \), i.e., is defined by \(uA = \prod_{\alpha \in I} u_\alpha \pi_\alpha(A) \) for each \(A \subseteq \prod_{\alpha \in I} X_\alpha \).

Clearly, if \(\{(X_\alpha, u_\alpha) : \alpha \in I\} \) is a family of closure spaces, then the projection map \(\pi_\beta : \prod_{\alpha \in I} (X_\alpha, u_\alpha) \to (X_\beta, u_\beta) \) is closed and continuous for every \(\beta \in I \).

Definition 2.1. Two maps \(u_1 \) and \(u_2 \) from power set to itself are called biČech closure operator (simply biclosure operator) for if they satisfies the following properties:

(i) \(u_1 \emptyset = \emptyset \) and \(u_2 \emptyset = \emptyset \),

(ii) \(A \subseteq u_1 A \) and \(A \subseteq u_2 A \) for all \(A \subseteq X \),

(iii) \(u_1(A \cup B) = u_1 A \cup u_1 B \) and \(u_2(A \cup B) = u_2 A \cup u_2 B \) for all \(A, B \subseteq X \).

A structure \((X, u_1, u_2) \) is called biČech closure space.

Definition 2.2. A subset \(A \) of a biČech closure space \((X, u_1, u_2) \) is called closed if \(u_1 u_2 A = A \). The complement of closed set is called open.
Clearly, A is a closed subset of a biČech closure space (X, u_1, u_2) if and only if A is both a closed subset of (X, u_1) and (X, u_2).

Let A be a closed subset of a biČech closure space (X, u_1, u_2). The following conditions are equivalent

(i) $u_2u_1A = A$,

(ii) $u_1A = A$, $u_2A = A$.

Proposition 2.3. Let $\{(X_\alpha, u_\alpha^1, u_\alpha^2) : \alpha \in I\}$ be a family of biČech closure spaces. Then F is a closed subset of $\prod_{\alpha \in I} (X_\alpha, u_\alpha^1, u_\alpha^2)$ if and only if F is both a closed subset of $\prod_{\alpha \in I} (X_\alpha, u_\alpha^1)$ and $\prod_{\alpha \in I} (X_\alpha, u_\alpha^2)$.

Proof. Let F be a closed subset of $\prod_{\alpha \in I} (X_\alpha, u_\alpha^1, u_\alpha^2)$. Then $F = \bigcap_{\alpha \in I} u_\alpha^1 \pi_\alpha \left(\bigcap_{\alpha \in I} u_\alpha^2 \pi_\alpha (F) \right)$.

Since $F \subseteq \bigcap_{\alpha \in I} u_\alpha^2 \pi_\alpha(F)$, $\bigcap_{\alpha \in I} u_\alpha^1 \pi_\alpha \left(\bigcap_{\alpha \in I} u_\alpha^2 \pi_\alpha (F) \right) = F$. Therefore, F is a closed subset of $\prod_{\alpha \in I} (X_\alpha, u_\alpha^1)$. Since $\bigcap_{\alpha \in I} u_\alpha^2 \pi_\alpha(F) \subseteq \bigcap_{\alpha \in I} u_\alpha^2 \pi_\alpha(F)$,

$\prod_{\alpha \in I} u_\alpha^2 \pi_\alpha(F) \subseteq \bigcap_{\alpha \in I} u_\alpha^1 \pi_\alpha \left(\bigcap_{\alpha \in I} u_\alpha^2 \pi_\alpha (F) \right) = F$. Consequently, F is a closed subset of $\prod_{\alpha \in I} (X_\alpha, u_\alpha^2)$.

Conversely, let F be a closed subset of $\prod_{\alpha \in I} (X_\alpha, u_\alpha^1)$ and $\prod_{\alpha \in I} (X_\alpha, u_\alpha^2)$. Then $F = \bigcap_{\alpha \in I} u_\alpha^1 \pi_\alpha (F)$ and $F = \bigcap_{\alpha \in I} u_\alpha^2 \pi_\alpha (F)$. Consequently, $F = \bigcap_{\alpha \in I} u_\alpha^1 \pi_\alpha \left(\bigcap_{\alpha \in I} u_\alpha^2 \pi_\alpha (F) \right)$.

Hence, F is a closed subset of $\prod_{\alpha \in I} (X_\alpha, u_\alpha^1, u_\alpha^2)$. \hfill \Box

3 CLOSED MAPS

Definition 3.1. Let (X, u_1, u_2) and (Y, v_1, v_2) be biČech closure spaces. A map $f : (X, u_1, u_2) \rightarrow (Y, v_1, v_2)$ is said to be closed (resp. open) if $f(F)$ is a closed (resp. open) subset of (Y, v_1, v_2) whenever F is a closed (resp. open) subset of (X, u_1, u_2).

The following statement is evident:

Proposition 3.2. Let (X, u_1, u_2), (Y, v_1, v_2) and (Z, w_1, w_2) be biČech closure spaces. If $f : (X, u_1, u_2) \rightarrow (Y, v_1, v_2)$ and $g : (Y, v_1, v_2) \rightarrow (Z, w_1, w_2)$ are closed (resp. open), then $g \circ f : (X, u_1, u_2) \rightarrow (Z, w_1, w_2)$ is closed (resp. open).

Proposition 3.3. Let $\{(X_\alpha, u_\alpha^1, u_\alpha^2) : \alpha \in I\}$ be a family of biČech closure spaces. Then for each $\beta \in I$, the projection map $\pi_\beta : \prod_{\alpha \in I} (X_\alpha, u_\alpha^1, u_\alpha^2) \rightarrow (X_\beta, u_\beta^1, u_\beta^2)$ is closed.
Proof. Let F be a closed subset of $\prod_{\alpha \in I} (X_\alpha, u_\alpha^1, u_\alpha^2)$. Then F is a closed subset of $\prod_{\alpha \in I} (X_\alpha, u_\alpha^1)$ and $\prod_{\alpha \in I} (X_\alpha, u_\alpha^2)$, respectively. Since $\pi_\beta : \prod_{\alpha \in I} (X_\alpha, u_\alpha^1) \rightarrow (X_\beta, u_\beta^1)$ is continuous, $\pi_\beta(F)$ is a closed subset of (X_β, u_β^1). Similarly, since $\pi_\beta : \prod_{\alpha \in I} (X_\alpha, u_\alpha^2) \rightarrow (X_\beta, u_\beta^2)$ is closed, $\pi_\beta(F)$ is a closed subset of (X_β, u_β^2). Consequently, $\pi_\beta(F)$ is a closed subset of $\prod_{\alpha \in I} (X_\alpha, u_\alpha^1, u_\alpha^2)$. Hence, π_β is closed.

Proposition 3.4. Let $\{(X_\alpha, u_\alpha^1, u_\alpha^2) : \alpha \in I\}$ be a family of biČech closure spaces and let $\beta \in I$. Then F is a closed subset of $(X_\beta, u_\beta^1, u_\beta^2)$ if and only if $F \times \prod_{\alpha \in I} X_\alpha$ is a closed subset of $\prod_{\alpha \in I} (X_\alpha, u_\alpha^1, u_\alpha^2)$.

Proof. Let $\beta \in I$ and let F be a closed subset of $(X_\beta, u_\beta^1, u_\beta^2)$. Then F is a closed subset of (X_β, u_β^1) and (X_β, u_β^2), respectively. Since $\pi_\beta : \prod_{\alpha \in I} (X_\alpha, u_\alpha^1) \rightarrow (X_\beta, u_\beta^1)$ is continuous, $\pi_\beta^{-1}(F) = F \times \prod_{\alpha \in I} X_\alpha$ is a closed subset of $\prod_{\alpha \in I} (X_\alpha, u_\alpha^1)$. Similarly, since $\pi_\beta : \prod_{\alpha \in I} (X_\alpha, u_\alpha^2) \rightarrow (X_\beta, u_\beta^2)$ is continuous, $\pi_\beta^{-1}(F) = F \times \prod_{\alpha \in I} X_\alpha$ is a closed subset of $\prod_{\alpha \in I} (X_\alpha, u_\alpha^2)$. Consequently, $F \times \prod_{\alpha \in I} X_\alpha$ is a closed subset of $\prod_{\alpha \in I} (X_\alpha, u_\alpha^1, u_\alpha^2)$.

Conversely, let $F \times \prod_{\alpha \in I} X_\alpha$ be a closed subset of $\prod_{\alpha \in I} (X_\alpha, u_\alpha^1, u_\alpha^2)$. Then $F \times \prod_{\alpha \in I} X_\alpha$ is a closed subset of $\prod_{\alpha \in I} (X_\alpha, u_\alpha^1)$ and $\prod_{\alpha \in I} (X_\alpha, u_\alpha^2)$, respectively. Since $\pi_\beta : \prod_{\alpha \in I} (X_\alpha, u_\alpha^1) \rightarrow (X_\beta, u_\beta^1)$ is closed, $\pi_\beta(F \times \prod_{\alpha \in I} X_\alpha) = F$ is a closed subset of (X_β, u_β^1). Similarly, since $\pi_\beta : \prod_{\alpha \in I} (X_\alpha, u_\alpha^2) \rightarrow (X_\beta, u_\beta^2)$ is closed, $\pi_\beta(F \times \prod_{\alpha \in I} X_\alpha) = F$ is a closed subset of (X_β, u_β^2). Consequently, F is a closed subset of $(X_\beta, u_\beta^1, u_\beta^2)$.

Proposition 3.5. Let $\{(X_\alpha, u_\alpha^1, u_\alpha^2) : \alpha \in I\}$ be a family of biČech closure spaces and let $\beta \in I$. Then G is an open subset of $(X_\beta, u_\beta^1, u_\beta^2)$ if and only if $G \times \prod_{\alpha \in I} X_\alpha$ is an open subset of $\prod_{\alpha \in I} (X_\alpha, u_\alpha^1, u_\alpha^2)$.

Proof. Let $\beta \in I$ and let G be an open subset of $(X_\beta, u_\beta^1, u_\beta^2)$. Then $X_\beta - G$ is a closed subset of $(X_\beta, u_\beta^1, u_\beta^2)$. By Proposition 3.4, $(X_\beta - G) \times \prod_{\alpha \in I} X_\alpha$ is a closed subset of $\prod_{\alpha \in I} (X_\alpha, u_\alpha^1, u_\alpha^2)$. But $(X_\beta - G) \times \prod_{\alpha \in I} X_\alpha = \prod_{\alpha \in I} X_\alpha - G \times \prod_{\alpha \in I} X_\alpha$. Therefore, $G \times \prod_{\alpha \in I} X_\alpha$ is an open subset of $\prod_{\alpha \in I} (X_\alpha, u_\alpha^1, u_\alpha^2)$. Conversely, if $G \times \prod_{\alpha \in I} X_\alpha$ is an open subset of $\prod_{\alpha \in I} (X_\alpha, u_\alpha^1, u_\alpha^2)$, then $X_\beta - G$ is a closed subset of $(X_\beta, u_\beta^1, u_\beta^2)$. By Proposition 3.4, $(X_\beta - G) \times \prod_{\alpha \in I} X_\alpha$ is a closed subset of $\prod_{\alpha \in I} (X_\alpha, u_\alpha^1, u_\alpha^2)$. Therefore, $G \times \prod_{\alpha \in I} X_\alpha$ is an open subset of $\prod_{\alpha \in I} (X_\alpha, u_\alpha^1, u_\alpha^2)$.
hence \(\prod_{\alpha \in I} X_\alpha - G \times \prod_{\alpha \in I} X_\alpha \) is a closed subset of \(\prod_{\alpha \in I} (X_\alpha, u_\alpha^1, u_\alpha^2) \). Therefore,
\(G \times \prod_{\alpha \in I} X_\alpha \) is an open subset of \(\prod_{\alpha \in I} (X_\alpha, u_\alpha^1, u_\alpha^2) \).

Conversely, let \(G \times \prod_{\alpha \in I} X_\alpha \) be an open subset of \(\prod_{\alpha \in I} (X_\alpha, u_\alpha^1, u_\alpha^2) \). Then
\(\prod_{\alpha \in I} X_\alpha - G \times \prod_{\alpha \in I} X_\alpha \) is a closed subset of \(\prod_{\alpha \in I} (X_\alpha, u_\alpha^1, u_\alpha^2) \). But \(\prod_{\alpha \in I} X_\alpha - G \times \prod_{\alpha \in I} X_\alpha = (X_\beta - G) \times \prod_{\alpha \in I} X_\alpha \), hence \((X_\beta - G) \times \prod_{\alpha \in I} X_\alpha \) is a closed subset of
\(\prod_{\alpha \in I} (X_\alpha, u_\alpha^1, u_\alpha^2) \). By Proposition 3.4, \(X_\beta - G \) is a closed subset of \((X_\beta, u_\beta^1, u_\beta^2) \). Consequently, \(G \) is an open subset of \((X_\beta, u_\beta^1, u_\beta^2) \).

Proposition 3.6. Let \((X, u_1, u_2) \) be a biČech closure space, \(\{(Y_\alpha, v_\alpha^1, v_\alpha^2) : \alpha \in I\} \) be a family of biČech closure spaces and \(f : X \to \prod_{\alpha \in I} Y_\alpha \) be a map. Then
\(f : (X, u_1, u_2) \to \prod_{\alpha \in I} (Y_\alpha, v_\alpha^1, v_\alpha^2) \) is closed if and only if \(\pi_\alpha \circ f : (X, u_1, u_2) \to (Y_\alpha, v_\alpha^1, v_\alpha^2) \) is closed for each \(\alpha \in I \).

Proof. Let \(f \) be closed. Since \(\pi_\alpha \) is closed for each \(\alpha \in I \), also \(\pi_\alpha \circ f \) is closed for each \(\alpha \in I \).

Conversely, let \(\pi_\alpha \circ f \) be closed for each \(\alpha \in I \). Suppose that \(f \) is not closed. Then there exist a closed subset \(F \) of \((X, u_1, u_2) \) such that
\[
\prod_{\alpha \in I} v_\alpha^1 \pi_\alpha \left(\prod_{\alpha \in I} v_\alpha^2 \pi_\alpha (f(F)) \right) \not\subseteq f(F).
\]

Therefore, there exist \(\beta \in I \) such that \(v_\beta^1 \pi_\beta (f(F)) \not\subseteq \pi_\beta (f(F)) \). But \(\pi_\beta \circ f \) is closed, \(\pi_\beta (f(F)) \) is a closed subset of \((Y_\beta, v_\beta^1, v_\beta^2) \). This is a contradiction. \(\Box \)

Proposition 3.7. Let \(\{(X_\alpha, u_\alpha^1, u_\alpha^2) : \alpha \in I\} \) and \(\{(Y_\alpha, v_\alpha^1, v_\alpha^2) : \alpha \in I\} \) be families of biČech closure spaces. For each \(\alpha \in I \), let \(f_\alpha : X_\alpha \to Y_\alpha \) be a surjection and let \(f : \prod_{\alpha \in I} X_\alpha \to \prod_{\alpha \in I} Y_\alpha \) be defined by \(f((x_\alpha)_{\alpha \in I}) = (f_\alpha(x_\alpha))_{\alpha \in I} \). Then
\(f : \prod_{\alpha \in I} (X_\alpha, u_\alpha^1, u_\alpha^2) \to \prod_{\alpha \in I} (Y_\alpha, v_\alpha^1, v_\alpha^2) \) is closed if and only if \(f_\alpha : (X_\alpha, u_\alpha^1, u_\alpha^2) \to (Y_\alpha, v_\alpha^1, v_\alpha^2) \) is closed for each \(\alpha \in I \).

Proof. Let \(\beta \in I \) and let \(F \) be a closed subset of \((X_\beta, u_\beta^1, u_\beta^2) \). Then \(F \times \prod_{\alpha \in I} X_\alpha \) is a closed subset of \(\prod_{\alpha \in I} (X_\alpha, u_\alpha^1, u_\alpha^2) \). Since \(f \) is closed, \(f \left(F \times \prod_{\alpha \in I} X_\alpha \right) \) is a closed subset of \(\prod_{\alpha \in I} (Y_\alpha, v_\alpha^1, v_\alpha^2) \). But \(f \left(F \times \prod_{\alpha \in I} X_\alpha \right) = f_\beta(F) \times \prod_{\alpha \in I} Y_\alpha \), hence...
Let $G = \prod_{\alpha \in I} X_\alpha$. Then $f_\beta(G) \times \prod_{\alpha \in I} Y_\alpha$ is an open subset of $\prod_{\alpha \in I} (Y_\alpha, v^1, v^2_\alpha)$. By Proposition 3.4, $f_\beta(F)$ is a closed subset of $(Y_\beta, v^1_\beta, v^2_\beta)$. Hence, f_β is closed.

Conversely, let f_β be closed for each $\beta \in I$. Suppose that f is not closed. Then there exist a closed subset F of $\prod_{\alpha \in I} (X_\alpha, u^1_\alpha, u^2_\alpha)$ such that

$$\prod_{\alpha \in I} v^1_\alpha \pi_\alpha \left(\prod_{\alpha \in I} v^2_\alpha \pi_\alpha (f(F)) \right) \not\subseteq f(F).$$

Therefore, there exist $\beta \in I$ such that $v^1_\beta v^2_\beta \pi_\beta (f(F)) \not\subseteq \pi_\beta (f(F))$. But $\pi_\beta (F)$ is a closed subset of $(X_\beta, u^1_\beta, u^2_\beta)$ and f_β is closed, $f_\beta(\pi_\beta (F))$ is a closed subset of $(Y_\beta, v^1_\beta, v^2_\beta)$. This is a contradiction. \hfill \Box

Proposition 3.8. Let $\{(X_\alpha, u^1_\alpha, u^2_\alpha) : \alpha \in I\}$ and $\{(Y_\alpha, v^1_\alpha, v^2_\alpha) : \alpha \in I\}$ be families of biČech closure spaces. For each $\alpha \in I$, let $f_\alpha : X_\alpha \to Y_\alpha$ be a surjection and let $f : \prod_{\alpha \in I} X_\alpha \to \prod_{\alpha \in I} Y_\alpha$ be defined by $f((x_\alpha)_{\alpha \in I}) = (f_\alpha(x_\alpha))_{\alpha \in I}$.

If $f : \prod_{\alpha \in I} (X_\alpha, u^1_\alpha, u^2_\alpha) \to \prod_{\alpha \in I} (Y_\alpha, v^1_\alpha, v^2_\alpha)$ is open, then $f_\alpha : (X_\alpha, u^1_\alpha, u^2_\alpha) \to (Y_\alpha, v^1_\alpha, v^2_\alpha)$ is open for each $\alpha \in I$.

Proof. Let $\beta \in I$ and let G be an open subset of $(X_\beta, u^1_\beta, u^2_\beta)$. Then $G \times \prod_{\alpha \in I \setminus \{\beta\}} X_\alpha$ is an open subset of $\prod_{\alpha \in I} (X_\alpha, u^1_\alpha, u^2_\alpha)$. Since f is open, $f(G \times \prod_{\alpha \in I \setminus \{\beta\}} X_\alpha)$ is an open subset of $\prod_{\alpha \in I \setminus \{\beta\}} (Y_\alpha, v^1_\alpha, v^2_\alpha)$. But $f(G \times \prod_{\alpha \in I \setminus \{\beta\}} X_\alpha) = f_\beta(G) \times \prod_{\alpha \in I \setminus \{\beta\}} Y_\alpha$, hence $f_\beta(G) \times \prod_{\alpha \in I \setminus \{\beta\}} Y_\alpha$ is an open subset of $\prod_{\alpha \in I \setminus \{\beta\}} (Y_\alpha, v^1_\alpha, v^2_\alpha)$. By Proposition 3.5, $f_\beta(G)$ is an open subset of $(Y_\beta, v^1_\beta, v^2_\beta)$. Hence, f_β is open. \hfill \Box

References

Received: April, 2009