On the Irreducibility for
Composition of Polynomials

Nidal Ali

Université du Littoral Côte d’Opale
50 rue F. Buisson, F-62228 Calais Cedex, France
nidal@lmpa.univ-littoral.fr
Ali.Nidal@lmpa.univ-littoral.fr

Abstract

Given an Hilbertian field K, a polynomial $g(x) \in K[x]$ and an integer $n \in \mathbb{N}$, we show that there exist infinitely many polynomials $f(x) \in K[x]$ of degree n such that $f \circ g(x)$ is irreducible over K. On the other hand, if $f(x) = x^2 - d \in K[x]$ be an irreducible polynomial, then we show that there exist infinitely many polynomials $g(x) \in K[x]$ non strictly composite such that $f \circ g(x)$ is reducible over K.

Mathematics Subject Classifications: 11C, 12Y08

Keywords: Composition of polynomials, Irreducibility, Hilbertian fields

1 Introduction

Let $f(x)$ and $g(x)$ are two polynomials in $K[x]$, under what conditions the polynomial $f \circ g(x)$ is irreducible? We will state some results about the irreducibility for composition of polynomials. Indeed, Shure in [3] has stated his conjecture defined as follows: If $g(x)$ is a monic polynomial of degree m with distinct integer roots, and $f(x) = x^2^n + 1$. Then $f \circ g(x)$ is irreducible over \mathbb{Q} except for $n = 0, m \leq 4$. This conjecture was proved for $n = 0$ by Flügel in [7], for $n = 1$ in the book of G. Pólya and G. Szegő [9], for $n = 2$ by H. Ille in [8] and for $n \leq 3$ in a more general form by A Brauer, R. Brauer and H. Hopf in [4].

In [1], The authors have obtained the irreducibility of all iterates of a quadratic polynomial over a field, in term of its discriminant. Some related results to the irreducibility of $f \circ g(x)$ for certain polynomials $f(x)$ of the second and fourth degree and for $g(x)$ having distinct roots in an imaginary quadratic field have been obtained by H.L. Dorwat and O. Ore (See [6]).
Let K be a field, the polynomial $f(x) \in K[x]$ is said to be strictly composite if there exist two polynomials over K, $u(x)$, $g(x)$ both of them of degrees at least two such that $f(x) = u(g(x))$.

Definition 2 Let K be a field, K is said to be hilbertian, if for every irreducible polynomial $P(X_1, ..., X_r, Y_1, ..., Y_s)$ in $K[X_1, ..., X_r, Y_1, ..., Y_s]$ (with $r, s \geq 1$), there exist infinitely many $(x_1^*, ..., x_r^*) \in K^r$ such that $P(x_1^*, ..., x_r^*, Y_1, ..., Y_s)$ is irreducible in $K[Y_1, ..., Y_s]$.

For example, an algebraic number field is hilbertian field.

Theorem 1 Let K be an hilbertian, $f(x) = x^2 - d \in K[x]$, be irreducible polynomial over K, then there exist infinitely many polynomials $g(x) \in K[x]$ non strictly composite such that $f \circ g(x)$ is reducible over K.

Now, we fix a polynomial $g(x) \in K[x]$, then we will study the set of polynomials $f(x) \in K[x]$ so that $f \circ g(x)$ is irreducible over K.

Theorem 2 Let K be a field, $f(x) \in K[x]$, be an irreducible polynomial over K and $g(x) \in K[x]$. Then the following two conditions are equivalent:
i) The polynomial $f \circ g(x)$ is reducible over K.
ii) The ideal $\langle f(x) \rangle$ is not prime in the ring $A = K[x, \xi]$, where ξ is a root in $K(x)$ of the polynomial $g(y) - x$.

Theorem 3 Let K be an hilbertian field, $g(x) \in K[x]$ be a polynomial and $n \geq 1$ an integer, then there exist infinitely many polynomials $f(x) \in K[x]$ such that $\deg f = n$ and $f \circ g(x)$ is irreducible over K.
2 Preliminaries lemmas

To show our results we need to the following lemmas.

Lemma 1 (Capelli’s lemma 1) Let K be a field, $f(x)$, $g(x)$ are two polynomials in $K[x]$ and let α be a root of $f(x)$ in an algebraic closure of K, then the following two conditions are equivalent:

i) $f \circ g(x)$ is irreducible over K.

ii) $f(x)$ is irreducible over K and $g(x) - \alpha$ is irreducible over $K(\alpha)$.

Proof. See ([14], Satz 4, p.288).

Lemma 2 Let K be a field, $f(x) = x^2 - d \in K[x]$, an irreducible polynomial over K and $g(x) \in K[x]$ a polynomial, then:

The polynomial $f \circ g(x)$ is reducible over K, if and only if, there exist $A(x), B(x), U(x), V(x)$, in $K[x]$, $A(x)$ is prime with $B(x)$, $A(x).B(x) \notin K, U(x).V(x) \notin K$ such that:

$$\begin{cases}
A(x).U(x) + B(x).V(x) = 1 \\
A(x).V(x) + dB(x).U(x) = g(x).
\end{cases}$$

Proof. Using lemma 1, the polynomial $f \circ g(x)$ is reducible over $K \iff g(x) + \sqrt{d}$ is reducible over $K(\sqrt{d}) \iff \exists A(x), B(x), U(x), V(x) \in K[x]$ with $A(x)$ or $B(x)$, $U(x)$ or $V(x)$ are not in K, such that: $g(x) + \sqrt{d} = [A(x) + \sqrt{d}.B(x)].[V(x) + \sqrt{d}.U(x)] \iff$

$$\begin{cases}
A(x).U(x) + B(x).V(x) = 1 \\
A(x).V(x) + dB(x).U(x) = g(x)
\end{cases}$$

Lemma 3 Let K be a field, $f(x) = x^2 - d \in K[x]$, an irreducible polynomial over K, and $A(x), B(x) \in K[x]$ are relatively prime polynomials such that A or B is not constant. We denote by: $U_0(x), V_0(x)$ the unique polynomials that verify:

$A(x).U_0(x) + B(x).V_0(x) = 1$ with $\deg U_0 < \deg B$ and $\deg V_0 < \deg A$. Let :

$g_0(x) = A(x).V_0(x) + dB(x).U_0(x)$. So, for every $\lambda(x) \in K[x]$, the polynomial

$g_\lambda(x) = g_0(x) + \lambda(x)[A(x)^2 - dB(x)^2]$ verifies that $f \circ g_\lambda(x)$ is reducible over K.

Proof. For every $\lambda(x) \in K[x]$, consider the polynomial

$$g_\lambda(x) + \sqrt{d} = g_0(x) + \sqrt{d} + \lambda(x)[A(x)^2 - dB(x)^2].$$
By Lemma 2, the polynomial \(f \circ g_0(x) \) is reducible over \(K \) and \(g_0(x) + \sqrt{d} = [A(x) + \sqrt{d}.B(x)].[V_0(x) + \sqrt{d}.U_0(x)] \), hence, we deduce that:

\[
g_\lambda(x) + \sqrt{d} = [A(x) + \sqrt{d}B(x)][\{V_0(x) + \lambda(x)A(x)\} + \sqrt{d}\{U_0(x) - \lambda(x)B(x)\}].
\]

The polynomials \(V_0(x) + \lambda(x)A(x) \), \(U_0(x) - \lambda(x)B(x) \) are not constant, otherwise, \(\deg V_0 \geq \deg A \) and \(\deg U_0 \geq \deg B \), this implies that the polynomial \(g_\lambda(x) + \sqrt{d} \) is reducible over \(K(\sqrt{d}) \). Finally, the required result follows from lemma 1 and then the polynomial \(f \circ g_\lambda(x) \) is reducible over \(K \).

Lemma 4 Let \(K \) be an hilbertian field, \(g_0(x), p(x) \) are two polynomials in \(K[x] \) of degree \(k, n \) respectively such that \(k < n \), then, for every \(l > n \), there exist infinitely many polynomials \(g(x) \) of degree \(l \) such that:

\[
g(x) \equiv g_0(x) \mod p(x) \text{ and } g(x) \text{ is not strictly composite.}
\]

Proof. First, Note that if \(f \) is strictly composite then \(f' \) is reducible over \(K \). Let \(m \geq 1 \) be an integer such that \(l = m + n \). Consider the polynomial:

\[
l(x) = x^m + \ldots + \lambda_1 x + \lambda_0 \text{ where } \lambda_0, \ldots, \lambda_{m-1} \text{ are algebraically independant variables over } K. \text{ Let:}
\]

\[
g_\lambda(x) = g_0(x) + \lambda(x)p(x).
\]

The polynomial \(g'_\lambda(x) \) (derivative of \(g_\lambda(x) \) with respect to \(x \)) is irreducible in \(K[\lambda_0, \ldots, \lambda_{m-1}, x] \). The field \(K \) is hilbertian, so there exist infinitely \(\lambda_0^*, \ldots, \lambda_{m-1}^* \) in \(K \) such that the substituted polynomial:

\[
g'_\lambda^*(x) = g'_\lambda(\lambda_0^*, \ldots, \lambda_{m-1}^*)
\]

is irreducible over \(K \), hence \(g_\lambda^*(x) \) is not strictly composite.

Lemma 5 (Capelli’s lemma 2) Let \(K \) be a field and \(x^n - c \in K[x] \). Then, \(x^n - c \) is reducible over \(K \) if and only if

\[
\begin{cases}
\exists p|n/ : c \in K^p \\
\text{Or} \\
\text{If } 4|n, c \in -4K^4.
\end{cases}
\]

Proof. See [10].
3 Proof of the results

Proof of theorem 1. Let $A(x), B(x) \in K[x]$ be two relatively prime polynomials, we know, by lemme 3 that, for every $\lambda(x) \in K[x]$, the polynomial

$$g_\lambda(x) = g_0(x) + \lambda(x)[A(x)^2 - dB(x)^2]$$

verifies that $f \circ g_\lambda(x)$ is reducible over K and for every $l \geq n = \deg[A(x)^2 - dB(x)^2]$, there exist infinitely polynomials $\lambda(x)$ of degree $l - n$ such that $g_\lambda(x)$ is not strictly composite. Thus, we obtain infinitely many polynomials $\lambda(x) \in K[x]$ such that $g_\lambda(x)$ is not strictly composite and $f \circ g_\lambda(x)$ is reducible over K.

Remark If $f(x) = x^2 - d \in K[x]$, is irreducible polynomial over an Hilbertian field K, then we can also find infinitely many polynomials $g(x) \in K[x]$ such that $f \circ g(x)$ is irreducible over K. Indeed, let $g(T, x) = T x^n$, then $f \circ g(T, x) = T^2 x^{2n} - d$ is irreducible in $K[T, x]$ by lemma 5. The field K is Hilbertian, so we can find infinitely many $t \in K^*$ such that $f \circ g(t, x)$ is irreducible in $K[x]$. Therefore, the required result follows.

Proof of theorem 2. $i \Rightarrow ii)$ Suppose that $f \circ g(x)$ is reducible over K, then there exist two polynomials $h_1(x), h_2(x)$ in $K[x]$ of degrees ≥ 1, such that $f \circ g(x) = h_1(x).h_2(x)$, this implies that $f \circ g(\xi) = h_1(\xi).h_2(\xi)$. But $g(\xi) = x$, so

$$f(x) = h_1(\xi).h_2(\xi).$$

(1)

Suppose that $h_1(\xi)$ or $h_2(\xi)$ is invertible in A. Let $h_1(\xi) \in A^*$, $\xi_1 = \xi, \xi_2, ..., \xi_n$ the conjugates of ξ in $K(x)$. They are different from each other because the polynomial $g(y) - x$ is separable in $K[x, y]$. The equation (1) gives,

$$f(x)^n = \prod_{i=1}^{n} h_1(\xi_i). \prod_{i=1}^{n} h_2(\xi_i).$$

Let $a = \prod_{i=1}^{n} h_1(\xi_i)$. Hence $a \in K[x]$, in fact, $a = N_{K(x, \xi)/K(\xi)}(h_1(\xi))$. Thus, $a \in A^* \cap K[x] = K[x]^* = K^*$. We deduce that $f(x)^n = a \prod_{i=1}^{n} h_2(\xi_i) = b.\text{Res}_y(g(y) - x, h_2(y))$, for some $b \in K^*$. Let $\deg h_2 = t, H(x) = \text{Res}_y(g(y) - x, h_2(y))$.

Since $\deg H = \deg h_2 = t$ and $f(x)^n = b.H(x)$, so:

$\deg f \circ g = n. \deg f = t < \deg f \circ g$, which is not possible. Therefore, $f(x)$ is
By substituting \(\Phi(x) = x \) is hilbertian, then, there exist infinitely many elements \(M \). Hence, using Hilbert’s theorem, we can find infinitely many \(g \) such that \(\Phi(g) = x \). Since \(\Phi(g) = x \) is absolutely irreducible (i.e. irreducible over \(K \)), it is irreducible in \(M \). Consequently, \(g(x) = y \) is reducible in \(K \). Using lemma 1, we deduce that \(f \circ g(x) \) is reducible over \(K \).

Proof of theorem 3. Let \(M/K \) be an extension of degree \(n \). The field \(M \) exists. Indeed, \(K \) is hilbertian, then there exists at least one irreducible polynomial of degree \(n \), obtained by substituting in \(K^n \) the polynomial \(F(s_1, ..., s_n, x) = x^n - s_1x^{n-1} + ... + (-1)^ns_n \). The field \(K \) is hilbertian then \(M \) is so (See [10], Theorem 48). Consider the polynomial,

\[
G(x, y) = g(x) - y.
\]

It is absolutely irreducible (i.e. irreducible over \(K \)) so irreducible in \(M[x, y] \). Hence, using Hilbert’s theorem, we can find infinitely many \(l \in M \) such that the polynomial \(g(x) - l \) is irreducible in \(M[x] \). The elements \(l \) can be taken as primitive elements of \(M \). Indeed, Let \(\{w_1, ..., w_n\} \), be a basis of \(M/K \), \(u_1, ..., u_n \) are \(n \) algebraically independent variables over \(K \), \(\xi = u_1.w_1 + ... + u_n.w_n \) and

\[
F(u_1, ..., u_n, x) = \prod_{i=1}^{n} (x - \xi_{\sigma_i}) = \text{Irr}[\xi, K(u_1, ..., u_n), x]
\]

be the generic polynomial of the field \(M \) over \(K \) where \(\sigma_1, ..., \sigma_n \) are \(n \)-distinct canonical imbedding of \(M \) in \(K \) and \(\xi_{\sigma_i} = u_1.\sigma_i(w_1) + ... + u_n.\sigma_i(w_n) \). By substituting \(u_1, ..., u_n \) in \(K^n \), we get the characteristic polynomial

\[
F(u_1^*, ..., u_n^*, x) = [\text{Irr}(\xi^*, K, x)]^d
\]

where \(\xi^* = u_1^*.w_1 + ... + u_n^*.w_n \), \(d = n/t \) and \(t = [K(\xi^*): K] \).

Consider now the discriminant with respect to \(x \) of \(F(u_1, ..., u_n, x) \) denoted by \(\Phi(u_1, ..., u_n) \) and let

\[
V_\Phi = \{(u_1^*, ..., u_n^*) \in K^n \text{ tel que } \Phi(u_1^*, ..., u_n^*) = 0\}
\]

This is an algebraic manifold considered as a Zariski’s closed of \(K^n \). Again, \(M \) is hilbertian, then, there exist infinitely elements \(l = u_1^*.w_1 + ... + u_n^*.w_n \in M \) such that \(\Phi(u_1^*, ..., u_n^*) \neq 0 \) (outside \(V_\Phi \)) and \(G(x, l) \) is irreducible in \(M[x] \). Since \(\Phi(u_1^*, ..., u_n^*) = \text{disc}_x F(u_1^*, ..., u_n^*, x) \neq 0 \), we deduce that \(F(u_1^*, ..., u_n^*, x) \) is separable in \(K[x] \), which implies that \(n = t \), thus, \([l, K] = n \). Therefore, \(l \) is primitive element of \(M/K \).
Set $f(x) = \text{Irr}(l, K, x)$, hence, $\deg f = n$. Using lemma 1, we deduce that the polynomial $f \circ g(x)$ is irreducible over K. □

Note that, if K is an arbitrary field. Then, by ([16], theorem 1), it need not follow that the extension M/K of degree n exists.

References

Received: March, 2009