Convergence Theorems for Common Fixed Point of a Finite Family of Nonself I_i-Asymptotically Quasi-Nonexpansive Mappings

Si-Sheng Yao and Yun-jie Yang

Department of Mathematics, Kunming University
Kunming, Yunnan, 650031, P.R. China

Abstract

In this paper, we consider the weak and strong convergence of implicit iteration process to a common fixed point of a finite family of nonself I_i-asymptotically quasi-nonexpansive mappings. Our results of this paper improve and extend the corresponding results of Shazad [8], Temir [5] and Gul [J. Math. Anal. Appl. 329(2007), 759-765].

Mathematics Subject Classification: 47H09, 47J25

Keywords and Phrases: Nonself I_i-asymptotically quasi-nonexpansive mapping, common fixed point, Convergence theorems

1 Introduction

Let C be a nonempty subset of a real normed linear space X. Let T be a self-mapping of C. T is said to be asymptotically nonexpansive if there exists a real sequence $\{\lambda_n\} \subset [0, +\infty)$, with $\lim_{n \to \infty} \lambda_n = 0$, such that $\|T^n x - T^n y\| \leq (1 + \lambda_n)\|x - y\|$, $\forall x, y \in C$.

It was proved in [2] that if X is uniformly convex and if C is bounded closed and convex subset of X, then every asymptotically nonexpansive mapping has a fixed point.

T is called I-asymptotically quasi-nonexpansive on C if there exists sequence $\{v'_n\} \subset [0, \infty)$ with $\lim_{n \to \infty} v'_n = 0$ such that $\|T^n u - p\| \leq (v'_n + 1)\|T^n u - p\|$ for all $u \in C, p \in F(T) \cap F(I)$ and $n = 1, 2, \ldots$.

Remark 1.1. From above definitions, it is easy to see that if $F(T)$ is nonempty, an asymptotically nonexpansive mapping must be I-asymptotically quasi-nonexpansive. But the converse does not hold.

Yaosheng@yahoo.com.cn.

This work was supported by the Scientific Research Foundation of Kunming University.
In the past few decades, many results on fixed points on asymptotically non-expansive, quasi-nonexpansive and asymptotically quasi-nonexpansive mappings in Banach space and metric spaces (see, e.g., [6,7,9]). Very recently, Rhoades and Temir [5] studied the convergence theorems for I-nonexpansive mappings, Temir and Gul [10] studied the convergence theorems for I-asymptotically quasi-nonexpansive mapping in Hilbert space. But when we look back with regret on [5,10], them does not give any strong convergence theorems.

In most papers which concern the iteration methods, the Mann iteration scheme has been studied and the mapping T has been assumed to map C into itself. The convexity of C then ensures that the sequence $\{x_n\}$ is well defined. If, however, C is a proper subset of the real Banach space X and T maps C into X (as the case in many applications), then the sequence $\{x_n\}$ may not be well defined. One method that has been used to overcome this in the case of single mapping T is to generalize the iteration scheme by introducing a retraction $P : X \to C$ as follows: for $x_1 \in C$,

$$x_{n+1} = P((1-a_n)x_n + a_nT(PT)^{n-1}x_n), \quad n \geq 1,$$

(1.1)

For nonself nonexpansive mappings, some authors (see, e.g., [9,12]) have studied the strong and weak convergence theorems in Hilbert space or uniformly convex Banach spaces.

As an important generalization of the class of asymptotically nonexpansive self-mappings, Chidume [3] in 2003 generalize nonexpansive, asymptotically nonexpansive, uniformly L-Lipschitzian to

Definition 1.1. Let C be a nonempty subset of a real normed space X. Let $P : X \to C$ be a nonexpansive retraction of X onto C.

(1) A nonself mapping $T : C \to X$ is called asymptotically if there exists a sequence $\{k_n\} \subset [1, \infty)$ with $k_n \to 1$ as $n \to \infty$ such that for every $n \in \mathcal{N}$,

$$\|T(PT)^{n-1}x - T(PT)^{n-1}y\| \leq k_n\|x - y\|, \quad \text{for every } x, y \in C.$$

(2) T is said to be uniformly L-Lipschitzian if there exists a constant $L > 0$ such that

$$\|T(PT)^{n-1}x - T(PT)^{n-1}y\| \leq L\|x - y\|, \quad \text{for every } x, y \in C.$$

(3) If let $T, I : C \to X$, the mapping T is said to be Γ-Lipschitzian if there exists $\Gamma \geq 0$ such that

$$\|T(PT)^{n-1}x - T(PT)^{n-1}y\| \leq \Gamma\|I(PI)^{n-1}x - I(PI)^{n-1}y\|, \quad \text{for every } x, y \in C.$$

Recently, concerning the convergence problems of an implicit iterative process to a common fixed point for a finite family of asymptotically nonexpansive
mappings have been obtained by a number of authors (see, e.g. [5,13]). Xu and Ori [13], in 2001, introduced an implicit iteration process for a finite family of nonexpansive mappings. They proved the weak convergence of the sequence \(\{x_n\} \) to a common fixed point for a finite family of nonexpansive mappings defined in Hilbert space.

Gu and Lu [3], in 2006, studied the weak and strong convergence of implicit iteration process with errors to a common fixed point for a finite family of nonexpansive mappings in Banach spaces.

Definition 1.2. Let \(T_i : X \to C, i \in \{1, ..., N\}, T_i \) is nonself I-asymptotically quasi-nonexpansive mappings, \(I_i \) is nonself asymptotically nonexpansive. Then an iterative scheme is the sequences of mappings \(\{x_n\} \) defined by, for given \(x_1 \in C \),

\[
x_{n+1} = P(a_nT_{i(n)}(PT_{i(n)})^{k(n)-1}x_{n+1} + b_nx_n + c_n u_n) \quad n \geq 1,
\]

where \(\{a_n\}, \{b_n\}, \{c_n\} \) are real sequences in \([\delta, 1 - \delta]\) for some \(\delta \in (0, 1) \) with \(a_n + b_n + c_n = 1 \) and \(n = (k(n) - 1)N + i(n), i(n) \in \{1, ..., N\} \).

Motivated by above works, we consider the iteration scheme (1.2) to approximating common fixed points for a finite family of nonself \(I_i \)-asymptotically quasi-nonexpansive mappings \(T_i \), and obtain the weak and strong convergence theorems for such mappings in uniformly convex Banach spaces.

2 Preliminaries.

Throughout this paper, we denote the set of all fixed points of a mapping \(T \) by \(F(T) \).

For approximating fixed points of nonexpansive mappings, Senter and Dotson [7] introduced a Condition (A). Later on, Maiti and Ghosh [4], Tan and Xu [9] studied the Condition (A) and pointed out that Condition (A) is weaker than the requirement of semi-compactness on mapping. For a finite family mappings, the condition (A) can be written to condition (B) as follow.

Definition 2.1. The mappings \(T_i : C \to C, (i \in \{1, ..., N\}) \) are said to satisfy condition (B) if there exists a nondecreasing function \(f : [0, +\infty) \to [0, +\infty) \) with \(f(0) = 0, f(r) > 0 \) for all \(r \in (0, +\infty) \) such that \(\max_{1 \leq i \leq N} \|x - T_i x\| \geq f(d(x, F)) \) for all \(x \in C \), where \(F = \bigcap_{i=1}^{N} F(T_i) \) and \(d(x, F) = \inf \{d(x, x^*) : x^* \in F\} \).

In what follows we shall use the following results.

Lemma 2.1 [2]. Let \(\{\alpha_n\}, \{\beta_n\}, \{\gamma_n\} \) and \(\{\mu_n\} \) be four nonnegative real sequences satisfying \(\alpha_{n+1} \leq (1 + \gamma_n)(1 + \mu_n)\alpha_n + \beta_n \) for all \(n \geq 1 \). If \(\sum_{n=1}^{\infty} \mu_n < \infty, \sum_{n=1}^{\infty} \gamma_n < \infty \) and \(\sum_{n=1}^{\infty} \beta_n < \infty \), then \(\lim_{n \to \infty} \alpha_n \) exists.

Lemma 2.2. [6] Let \(E \) be a real uniformly convex Banach space and \(0 \leq p \leq t_n \leq q < 1 \) for all positive integer \(n \geq 1 \). Also suppose \(\{x_n\} \) and
\{y_n\} are two sequences of \(E\) such that \(\limsup_{n \to \infty} \|x_n\| \leq r\), \(\limsup_{n \to \infty} \|y_n\| \leq r\) and \(\limsup_{n \to \infty} \|t_n x_n + (1 - t_n)y_n\| = r\) hold for some \(r \geq 0\), then \(\lim_{n \to \infty} \|x_n - y_n\| = 0\).

Lemma 2.3. [1] Let \(X\) be a real uniformly convex Banach space, \(C\) a nonempty closed convex subset of \(X\), and let \(T: C \to X\) be nonself asymptotically nonexpansive mapping with a sequence \(\{k_n\} \subset [1, \infty)\) and \(k_n \to 1\) as \(n \to \infty\). Then \(E - T\) is demiclosed at zero.

3 Main Results

Lemma 3.1. Let \(X\) be a uniformly convex Banach space, \(C\) be a nonempty bounded and closed convex subset of \(X\), \(\{T_i : i \in \{1, 2, \ldots, N\}\} : C \to X\) be \(N\) \(I_i\)-asymptotically quasi-nonexpansive nonself-mappings with sequences \(\{v_{i_n}\} \subset [0, \infty)\) such that \(\sum_{n=1}^{\infty} u_{i_n} < \infty\) and \(I_i : i \in \{1, \ldots, N\} : C \to X\) be \(N\) asymptotically nonexpansive nonself-mappings with \(\{v_{i_n}\} \subset [0, \infty)\) such that \(\sum_{n=1}^{\infty} v_{i_n} < \infty\) and \(F = \bigcap_{i=1}^{N} (F(T_i) \cap F(I_i)) \neq \emptyset\). Then the implicitly iterative sequence \(\{x_n\}\) is generated by (1.2) converges strongly to a common fixed point in \(F\) if and only if \(\liminf_{n \to \infty} d(x_n, F) = 0\).

Proof. Since \(C\) is bounded, there exists \(M > 0\) such that \(\|x_n - u_n\| \leq M\), for all \(n \in N\). For any \(p \in F = \bigcap_{i=1}^{N} F(T_i) \cap F(I_i) \neq \emptyset\).

\[
\|x_{n+1} - p\| = \|b_n x_n + a_n T_{i(n)} (PT_{i(n)})^{k(n)-1} x_{n+1} + c_n u_n - p\|
\leq (1 - a_n) \|x_n - p\| + a_n \|T_{i(n)} (PT_{i(n)})^{k(n)-1} x_{n+1} - p\| + c_n \|u_n - x_n\|
\leq (1 - a_n) \|x_n - p\| + a_n (1 + u_{ik}) \|I_{i(n)} (PI_{i(n)})^{k(n)-1} x_{n+1} - p\| + c_n M
\leq (1 - a_n) \|x_n - p\| + a_n (1 + u_{ik}) (1 + v_{ik}) \|x_{n+1} - p\| + c_n M
\leq (1 - a_n) \|x_n - p\| + (a_n + u_{ik} + v_{ik}) \|x_{n+1} - p\| + c_n M.
\]

Transposing and simplifying above inequality and noticing that \(a_n \in [\delta, 1 - \delta]\). We have

\[
(1 - a_n) \|x_{n+1} - p\| \leq (1 - a_n) \|x_n - p\| + (u_{ik} + v_{ik}) \|x_{n+1} - p\| + c_n M
\leq (1 - a_n) \|x_n - p\| + (u_{ik} + v_{ik}) \left(1 - \frac{a_n}{\delta}\right) \|x_{n+1} - p\| + c_n M \left(1 - \frac{a_n}{\delta}\right).
\]

and

\[
\frac{\delta - u_{ik} - v_{ik}}{\delta} \|x_{n+1} - p\| \leq \|x_n - p\| + c_n \frac{M}{\delta}.
\]

Since \(\Sigma_{k=1}^{\infty} u_{ik} < \infty\) and \(\Sigma_{k=1}^{\infty} v_{ik} < \infty\) for all \(i \in \{1, 2, \ldots, N\}\), thus \(\lim_{k \to \infty} u_{ik} = 0, \lim_{k \to \infty} v_{ik} = 0\), there exists a natural number \(n_0\), as \(k > \frac{n_0}{N} + 1\), i.e. \(n > n_0\) such that \(\delta - u_{ik} - v_{ik} > 0\) and \(u_{ik} + v_{ik} < \frac{\delta}{2}\). Then we have

\[
\|x_{n+1} - p\| \leq (1 + w_{ik}) \|x_n - p\| + c_n M_1.
\]
where \(M_1 = \frac{M}{\delta}, w_{ik} = \frac{u_{ik} + v_{ik}}{\delta - u_{ik} - v_{ik}} < \frac{2}{\delta}(u_{ik} + v_{ik}) < \frac{2}{\delta}u_{ik}, \) therefore \(\sum_{k=1}^{\infty} w_{ik} < \frac{2}{\delta - u_{ik} - v_{ik}} < \infty, \) for all \(i. \)

This implies that \(d(x_{n+1}, F) \leq (1 + w_{ik})d(x_n, F) + c_n M_1. \) From Lemma 2.1 \(\lim_{n \to \infty} d(x_{n+1}, F) \) exists and by the hypothesis \(\liminf_{n \to \infty} d(x_n, F) = 0. \) We have \(\lim_{n \to \infty} d(x_n, F) = 0. \)

Let \(\varepsilon > 0 \) since \(\lim_{n \to \infty} d(x_n, F) = 0, \) there exist natural number \(N_1 \) such that when \(n \geq N_1, d(x_n, F) < \frac{\varepsilon}{3}. \) Thus, there exists \(x^* \in F \) such that for above \(\varepsilon \) there exists positive integer \(N_2 \geq N_1 \) such that as \(n \geq N_2, \| x_n - x^* \| < \frac{\varepsilon}{2}. \)

Now for arbitrary \(n, m \geq N_2, \) consider \(\| x_n - x_m \| \leq \| x_n - x^* \| + \| x_m - x^* \| < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} < \varepsilon. \) This implies that \(\{ x_n \} \) is a cauchy sequence in \(K, \) therefor it converges to a point, say \(p \in K. \) And \(\lim_{n \to \infty} d(x_n, F) = 0 \) gives that \(d(p, F) = 0. \) By the routine proof, we know \(F \) is closed. Thus \(p \in F. \) The proof is completed.

Lemma 3.2. Let \(X, C, \{ x_n \} \) be same as Lemma3.1, \(\{ T_i : i \in \{1, 2, ..., N\} \} : C \to X \) be \(N \) uniformly \(\Gamma \)-Lipschitzian \(I_i \)-asymptotically quasi-nonexpansive nonself-mappings with sequences \(\{ v_{in} \} \subset [0, \infty) \) such that \(\sum_{i=1}^{\infty} v_{in} < \infty \) and \(I_i : i \in \{1, \ldots, N\} : C \to X \) be \(N \) uniformly \(L \)-Lipschitzian asymptotically nonexpansive nonself-mappings with \(\{ u_{in} \} \subset [0, \infty) \) such that \(\sum_{i=1}^{\infty} u_{in} < \infty \) and \(F = \cap_{i=1}^{N} F(T_i) \cap F(I_i) \neq \emptyset. \) If \(F \neq \emptyset \) then \(\lim_{n \to \infty} \| T_i x_n - x_n \| = 0, \forall l = 1, 2, \ldots, N. \)

Proof. By Lemma 3.1 for any \(p \in F, \lim_{n \to \infty} \| x_n - p \| \) exists. Let \(\lim_{n \to \infty} \| x_n - p \| = d. \) Since

\[
\| T_i(n)(PT_i(n))^{k(n)-1}x_{n+1} - p + c_n(u_n - x_n) \|
\leq \Gamma l \| I_i(n)(T_i(n)(PT_i(n))^{k(n)-2}x_{n+1}) - p \| + c_n M
\leq \Gamma L \| T_i(n)(PT_i(n))^{k(n)-2}x_{n+1} - p \| + c_n M \leq \cdots \leq (\Gamma L)^n \| x_{n+1} - p \| + c_n M.
\]

We have \(\limsup_{n \to \infty} \| T_i(n)(PT_i(n))^{k(n)-1}x_{n+1} - p + c_n(u_n - x_n) \| \leq d. \)
\(\| x_n - p + c_n(u_n - x_n) \| \leq \| x_n - p \| + c_n M \) which implies \(\limsup_{n \to \infty} \| x_n - p + c_n(u_n - x_n) \| \leq d. \)

And \(\lim_{n \to \infty} \| x_{n+1} - p \| = d \) means that \(\lim_{n \to \infty} \| a_n[T_i(n)(PT_i(n))^{k(n)-1}x_{n+1} - p + c_n(u_n - x_n)] + (1 - a_n)[x_n - p + c_n(u_n - x_n)] \| = d. \) By Lemma 2.2, we have

\[
\lim_{n \to \infty} \| T_i(n)(PT_i(n))^{k(n)-1}x_{n+1} - x_n \| = 0
\]

Hence \(\| x_{n+1} - x_n \| = a_n \| T_i(n)(PT_i(n))^{k(n)-1}x_{n+1} - x_n \| + c_n \| u_n - x_n \| \to 0. \)

From \(\| T_i(n)(PT_i(n))^{k(n)-1}x_n - x_n \| \leq \| x_{n-1} - T_i(n)(PT_i(n))^{k(n)-1}x_n \| + \| x_n - x_n \|, \)
it follows that

\[
\lim_{n \to \infty} \| T_i(n)(PT_i(n))^{k(n)-1}x_n - x_n \| = 0 \quad (3.3)
\]

Notice that for each \(n > N, n = (n - N)(mod \ N) \) and \(n = (k(n) - 1)N + i(n), \) hence \(n - N = ((k(n) - 1) - 1)N + i(n) = (k(n - N) - 1)N + i(n - N), \) that is \(k(n - N) = k(n) - 1 \) and \(i(n - N) = i(n). \)
From (3.3)
\[\|x_n - T_nx_n\| \leq \|x_n - T_{i(n)}(PT_{i(n)})^{k(n)-1}x_n\| + \|T_{i(n)}(PT_{i(n)})^{k(n)-1}x_n - T_nx_n\| \]
\[\leq \|x_n - T_{i(n)}(PT_{i(n)})^{k(n)-1}x_n\| + L\|T_{i(n)}(PT_{i(n)})^{k(n)-2}x_n - x_n\| \]
\[\leq \|x_n - T_{i(n)}(PT_{i(n)})^{k(n)-1}x_n\| + \Gamma L\|T_{i(n)}(PT_{i(n)})^{k(n)-2}x_n - T_{i(n)-N}(PT_{i(n)-N})^{k(n)-2}x_n - x_n\| + \|x_{n-N} - x_n\| \]
\[\leq \|x_n - T_{i(n)}(PT_{i(n)})^{k(n)-1}x_n\| + \Gamma L(1+\Gamma L)\|x_n - x_{n-N}\| + \Gamma L\|T_{i(n)-N}(PT_{i(n)-N})^{k(n)-1}x_n - x_n\| \rightarrow 0 \quad (n \to \infty). \]

This implies that \(\lim_{n \to \infty} \|T_nx_n - x_n\| = 0 \). Now for all \(l = \{1, 2, ..., N\} \)
\[\|x_n - T_{n+l}x_n\| \leq \|x_n - x_{n+l}\| + \|x_{n+l} - T_{n+l}x_{n+l}\| + \|T_{n+l}x_{n+l} - T_{n+l}x_n\| \]
\[\leq \|x_n - x_{n+l}\| + \|x_{n+l} - T_{n+l}x_{n+l}\| + \Gamma L\|x_{n+l} - x_n\| \]
\[\leq \|x_{n+l} - T_{n+l}x_{n+l}\| + (1+\Gamma L)\|x_n - x_{n+l}\| \to 0. \]

So \(\lim_{n \to \infty} \|T_{n+l}x_n - x_n\| = 0 \) for all \(l = \{1, 2, ..., N\} \). Consequently, we have
\[\lim_{n \to \infty} \|T_{i}x_n - x_n\| = 0. \quad (3.4) \]

The proof is completed.

Theorem 3.3. Let \(X \) be a uniformly convex Banach space and \(C, T_i, I_i, \{x_n\} \) be same as in Lemma 3.2. If \(F \neq \emptyset \), then \(\{x_n\} \) converges weakly to a common fixed point of \(\{T_i, i \in \{1, ..., N\}\} \).

Proof. Let \(p \in F \). Then, as Lemma 3.2, it follows \(\lim_{n \to \infty} \|x_n - p\| \) exists and so for \(n \geq 1 \), \(\{x_n\} \) is bounded on \(C \). Since \(X \) is uniformly convex, every bounded subset of \(X \) is weakly compact the boundedness of \(\{x_n\} \) in \(C \), there exists a subsequence \(\{x_{n_k}\} \) of \(\{x_n\} \) such that \(\lim_{n \to \infty} x_{n_k} = p \) weakly. We assume that \(n_k = i(modN) \), where \(i \) is some positive integer in \(\{1, 2, ..., N\} \). Otherwise, we can take a subsequence \(\{x_{n_k}\} \subset x_{n_k} \) such that \(n_k = i(modN) \).

For \(l \in \{1, 2, ..., N\} \), there exists an integer \(j \in \{1, 2, ..., N\} \) such that \(n_{k+j} = l(modN) \). For all \(l \in \{1, 2, ..., N\} \), from (3.4) we have \(\lim_{n \to \infty} \|T_{i}x_n - x_n\| = 0 \). Also, by Lemma 2.3, for each \(l \in \{1, 2, ..., N\} \) we know that \(p \in F(T_l) \). By arbitrariness of \(l \in \{1, 2, ..., N\} \), we have \(p \in F = \bigcap_{l=1}^{N} F(T_l) \). If \(F \) is a singleton, then the proof is complete. For \(p, q \in F \), we assume that \(F \) is not singleton. Suppose \(p, q \in \omega(\{x_n\}) \), where \(\omega(\{x_n\}) \) denotes the weak limit set of \(\{x_n\} \). Let \(x_{n_k} \) and \(x_{m_l} \) be two subsequences of \(\{x_n\} \) which converge weakly to \(p \) and \(q \), respectively. By Lemma 3.2 and 2.3, we have \(p \in \bigcap_{l=1}^{N} F(T_l) \) and \(q \in \bigcap_{l=1}^{N} F(T_l) \). Therefore \(T_lp = p \) for all \(l \in \{1, 2, ..., N\} \) and \(T_lq = q \) for all \(l \in \{1, 2, ..., N\} \).
For the uniqueness, assume that \(p \neq q \) and \(\{x_n\} \to p, \{x_m\} \to q \). By Opial’s condition, we get that

\[
\lim_{n \to \infty} \|x_n - p\| = \lim_{k \to \infty} \|x_{nk} - p\| \leq \lim_{k \to \infty} \|x_{nk} - q\| = \lim_{n \to \infty} \|x_n - p\| \leq \lim_{j \to \infty} \|x_{mj} - q\| \leq \lim_{j \to \infty} \|x_{mj} - p\| \leq \lim_{n \to \infty} \|x_n - q\|.
\]

This is a contradiction. Thus \(\{x_n\} \) converges weakly to a common fixed point of \(\{T_i, i \in \{1, \ldots, N\}\} \). The proof is completed.

Theorem 3.4. Let \(X \) be a uniformly convex Banach space and \(C, T_i, I_i, \{x_n\} \) be same as in Lemma 3.2. If \(F \neq \emptyset \) and \(I_i, T_i \) satisfy the Condition (B), then \(\{x_n\} \) converges strongly to a common fixed point of \(\{T_i, i \in \{1, \ldots, N\}\} \).

Proof. By Lemma 3.1, for all \(p \in F \), from (3.2), \(\|x_{n+1} - p\| \leq (1 + w_{ik})\|x_n - p\| + c_n M \) for \(n \geq 1 \) with \(\sum_{k=1}^{\infty} w_{ik} < \infty \) and \(\sum_{n=1}^{\infty} c_n < \infty \), for all \(i \). This implies that \(d(x_{n+1}, F) \leq (1 + w_{ik})d(x_n, F) + c_n M \). By Lemma 2.1 \(\lim_{n \to \infty} d(x_{n+1}, F) \) exists.

From Lemma 3.2, \(\lim_{n \to \infty} \|T_l x_n - x_n\| = 0, \forall l = 1, 2, \ldots, N \). The condition (B) guarantees that \(\lim_{n \to \infty} f(d(x_n, F)) = 0 \). Since \(f \) is a nondecreasing function and \(f(0) = 0 \), it follows that \(\lim_{n \to \infty} d(x_n, F) = 0 \). By Lemma 3.1, we know that \(\{x_n\} \) is a cauchy sequence. Thus, \(\{x_n\} \) converges strongly to a common fixed point of \(\{T_i, i \in \{1, \ldots, N\}\} \).

References

Received: January, 2009