A Note on Hilbert-Schmidt Hankel-Operators between Differently Weighted Spaces

Georg Schneider
Universität Paderborn
Fakultät für Wirtschaftswissenschaften
Warburger Str. 100; 33098 Paderborn, Germany
georg.schneider@notes.upb.de

Kristan Schneider
Universität Wien
Fakultät für Mathematik
Nordbergstr. 15; 1090 Wien, Austria

Abstract
The paper we investigates Hankel operators $H_f : F^2_1 \rightarrow L^2_2$ with anti-holomorphic symbols $f = \sum_{k=0}^{\infty} b_k \overline{z}^k \in L^2_1$, where F^2_1 is a generalized Fock space and L^2_{2n} is the L^2 space with weight $e^{-|z|^m}$. We show that each Hankel operator with anti-holomorphic L^2_{2n}-symbol is Hilbert-Schmidt. This result complements previous research of [5]. There it is shown that in the general case of Hankel operators $H_f : F^2_n \rightarrow L^2_m$ and $n < m$ each Hankel operator with polynomial symbol is Hilbert-Schmidt.

Mathematics Subject Classification: 47B35; 32A36

Keywords: Hankel operator, (Generalized) Fock spaces, Weighted Bergman spaces and Bergman kernel, Bergman projection

1 Introduction

We define the generalized Fock space F^2_n by

$$F^2_n := F^2(\mathbb{C}, |z|^n) := \left\{ g : \mathbb{C} \rightarrow \mathbb{C} \mid g \text{ entire and } \|g\|_n^2 < \infty \right\},$$

where

$$\|g\|_n^2 := \int_{\mathbb{C}} |g(z)|^2 e^{-|z|^n} d\lambda(z),$$
where \(d\lambda \) denotes the Lebesgue measure in \(C \cong \mathbb{R}^2 \). Additionally, let
\[
L_n^2 := L^2(C, |z|^n) := \{ g : C \to C \mid g \text{ measurable and } \|g\|_n^2 < \infty \} / \ker \|n\).
\]

It is standard to see that \(\mathcal{F}_n^2 \) is a closed subspace of \(L_n^2 \) and therefore a Hilbert space.

The Hankel operator, \(H_n^2 : \mathcal{F}_n^2 \to \mathcal{F}_n^{2 \perp} \), with symbol \(f : C \to C \) (\(f \in L_n^2 \)) is given by
\[
H_n^2(h) = (\text{Id} - P_n)(\overline{f}h),
\]
where \(\mathcal{F}_n^{2 \perp} \) denotes the orthogonal space of the generalized Fock space and \(P_n : L_n^2 \to \mathcal{F}_n^2 \) denotes the Bergman projection. We ignore the dependence of \(H_n^2 \) on \(n \) in the following if the choice of \(n \) is obvious. Note, that the above definition surely makes sense for all \(h \) that satisfy \(\overline{f}h \in L_n^2 \). In general, the Hankel operator will not be globally defined. Let \(\{u_{k,n} := \frac{z^k}{c_{k,n}} \mid k \in \mathbb{N} \} \) be the natural basis of \(\mathcal{F}_n^2 \) and \(c_{k,n} \) the moments corresponding to \(n \). That is
\[
c_{k,n}^2 = \langle z^k, z^k \rangle_n = \int_C |z^k|^2 e^{-|z|^n} d\lambda(z) = \|z^k\|_n^2, \ k, n \in \mathbb{N}.
\]

In [5] we have proved the following result:

Theorem 1.1. Let \(\overline{f} \) be a anti-holomorphic symbol and consider the Hankel operator \(H_{\overline{f}} \) as an operator from \(\mathcal{F}_n^2 \) to \(L_n^2 \). Then we have the following result:

(1) For \(n > m \) there are no nontrivial Hilbert-Schmidt Hankel operators with anti holomorphic symbols. That is, if a Hankel operator with symbol \(\overline{f} \) is Hilbert-Schmidt, the symbol \(\overline{f} \) must be constant. Moreover, there are no nontrivial bounded Hankel operators with anti-holomorphic symbols.

(2) For \(n = m \) there are no nontrivial Hilbert-Schmidt Hankel operators with anti holomorphic symbols. However, there are bounded Hankel operators. In particular, the Hankel operator \(H_{\overline{f}} \) is bounded if and only if \(\overline{f} \) is a polynomial of degree \(N \) satisfying \(2N \leq m \).

(3) For \(n < m \) each Hankel operator with monomial anti-holomorphic symbol is Hilbert-Schmidt and therefore each Hankel operator with polynomial anti-holomorphic symbol is Hilbert-Schmidt. Especially, each Hankel operator with polynomial anti-holomorphic symbol is bounded.

This work complements some earlier work (See [2], [3] and [1]). In this paper we want to prove the following result:
Theorem 1.2. Let \mathcal{F} be an anti-holomorphic symbol and consider the Hankel operator $H_\mathcal{F}$ as an operator from \mathcal{F}_1^2 to L_2^2. Then all Hankel operators with anti-holomorphic L_2^2-symbols are Hilbert-Schmidt.

2 Proof of the main result

In this section we prove Theorem 1.2.

Proof. Let $\mathcal{F} = \sum_{l=0}^{\infty} b_l z^l \in L_1^2$, where $b_l \in \mathbb{C}$. The condition that $\mathcal{F} \in L_1^2$ can be equivalently expressed by

$$\|\mathcal{F}\|_1^2 = \sum_{l=0}^{\infty} |b_l|^2 c_{l,1}^2 < \infty. \quad (1)$$

Now, consider the expression

$$\sum_{k=0}^{\infty} \sum_{l=0}^{\infty} |b_l|^2 c_{k+l,2} \frac{c_{k,1}^2}{c_{k,1}^2} + \sum_{k=0}^{\infty} \sum_{l=0}^{k} |b_l|^2 \left(\frac{c_{k,2}^2 c_{k-l,2}}{c_{k,1}^2} - 2 \frac{c_{k,2}^2}{c_{k-l,1}^2} \right) \geq 0.$$

It is obvious, from what we know so far, that if the above sum is finite, the Hankel operator with symbol $\mathcal{F} = \sum_{l=0}^{\infty} b_l z^l$ is Hilbert-Schmidt. Therefore, the aim of the following part of the proof is to show that the above sum is finite. Using the identity

$$c_{k,m}^2 = \frac{2\pi}{m} \Gamma \left(\frac{2k+2}{m} \right),$$

we obtain

$$\frac{c_{k,2}^2 c_{k-l,2}}{c_{k,1}^2} - 2 \frac{c_{k,2}^2}{c_{k-l,1}^2} = \frac{\Gamma(k+1)\Gamma(k-l+1)}{4\Gamma(2k+1)^2} - \frac{\Gamma(k+1)}{\Gamma(2k-2l+2)} \leq \frac{\Gamma(k+1)}{4\Gamma(2k-2l+1)} \left(\frac{\Gamma(k-l+1)}{4\Gamma(2k+1)} - 1 \right) < 0.$$

Hence, it suffices to show that the expression

$$\sum_{l=0}^{\infty} \sum_{k=0}^{\infty} |b_l|^2 \frac{c_{k+l,2}}{c_{k,1}^2}$$

is finite. The above sum is equal to

$$\frac{1}{2} \sum_{l=0}^{\infty} \sum_{k=0}^{\infty} |b_l|^2 \frac{\Gamma \left(\frac{2(k+l+2)}{2} \right)}{\Gamma \left(\frac{2k+2}{2} \right)} = \frac{1}{2} \sum_{l=0}^{\infty} \sum_{k=0}^{\infty} |b_l|^2 \frac{(k+l)!}{(2k+1)!}.$$
According to equation (1) it is sufficient to show that there is a constant C such that for each l

$$\sum_{k=0}^{\infty} \frac{c_{k+l,2}^2}{c_{k,1}^2 c_{l,1}^2} < C,$$

i.e.,

$$\sum_{k=0}^{\infty} \frac{\Gamma \left(\frac{2(k+l)+2}{m} \right)}{\Gamma \left(\frac{2k+2}{n} \right) \Gamma \left(\frac{2l+2}{n} \right)} = \sum_{k=0}^{\infty} \frac{(k+l)!}{(2k+1)!(2l+1)!} \leq C.$$

For $k \leq l + 1$ we have

$$\frac{(k+l)!}{(2k+1)!(2l+1)!} \leq \frac{1}{(2k+1)!},$$

and for $k > l + 1$ we have

$$\frac{(k+l)!}{(2k+1)!(2l+1)!} \leq \frac{(2k-1)!}{(2k+1)!(2l+1)!} \leq \frac{1}{(2k+1)(2k)(2l+1)!}.$$

Therefore,

$$\sum_{k=0}^{\infty} \frac{(k+l)!}{(2k+1)!(2l+1)!} \leq \sum_{k=0}^{l+1} \frac{(k+l)!}{(2k+1)!(2l+1)!} + \sum_{k=l+2}^{\infty} \frac{(k+l)!}{(2k+1)!(2l+1)!} \leq \sum_{k=0}^{l+1} \frac{1}{(2k+1)!} + \sum_{k=l+2}^{\infty} \frac{1}{(2k+1)(2k)(2l+1)!} \leq \sum_{k=0}^{\infty} \frac{1}{(2k+1)!} + \sum_{k=0}^{\infty} \frac{1}{(2k+1)(2k)(2l+1)!} \leq \left(1 + \frac{1}{(2l+1)!}\right) \frac{\pi^2}{6} \leq \frac{\pi^2}{3} = C < \infty$$

for all $l \in \mathbb{N}$. This finishes the proof.
References

Received: December, 2008