A Note on Special Abel Matrices into λ

Mulatu Lemma and Jonathan Lambright

Savannah State University
Savannah, Ga 31404, USA
Lemmam@savstate.edu

Abstract. In [1], Friday introduced and studied the Abel Matrix A_t as mappings into ℓ. If t is a sequence in $(0,1)$ that converges to 1, then the A_t Abel Matrix [1] is defined by $a_{nk} = t_n^k \left(1 - t_n\right)$. In this note, we study the special form of the A_t matrix denoted by A_v, where $v_n = 1 - \left(\frac{1}{n+2}\right)^q$, $q > 1$. The matrix A_v is defined by

$$a_{nk} = (k+1) v_n^k (1 - v_n)^2 = (k+1) \left[1 - \left(\frac{1}{n+2}\right)^q\right]^k \left(\frac{1}{n+2}\right)^{2q}$$

It will be shown that is A_v an $\ell - \ell$ matrix. Also, the translativity of A_v in the $\ell - \ell$ setting is investigated.

Mathematical Subject Classification: Primary 40A05, 40D99; Secondary 40C05

Keywords: $\ell - \ell$ method, $\ell - \ell$ translativity, and Abel matrix ψ

1. Basic notations and definitions.

Let $A = (a_{nk})$ be an infinite matrix defining a sequence to a sequence summability transformation given by

$$(Ax)_n = \sum_{k=0}^{\infty} a_{nk} x_k ,$$
where \((Ax)_n \) denotes the \(n \)th term of the image sequence \(Ax \). Let \(y \) be a complex number sequence. Throughout this paper we use the following basic notations and definitions:

(i) \(c = \{ \text{the set of all convergent complex number sequences} \} \),

(ii) \(\ell = \{ y : \sum_{k=0}^{\infty} |y_k| \ \text{converges} \} \),

(iii) \(\ell (A) = \{ y : Ay \in \ell \} \),

(iv) \(c (A) = \{ y : y \ \text{is summable by} \ A \} \).

\textbf{DEFINITION 1.} If \(X \) and \(Y \) are sets of complex number sequences, then the matrix \(A \) is called an \(X-Y \) matrix if the image \(Au \) of \(u \) under the transformation \(A \) is in \(Y \) whenever \(u \) is in \(X \).

\textbf{DEFINITION 2.} The summability matrix \(A \) is said to be \(\ell - \) translative for the sequence \(u \) in \(\ell (A) \) provided that each of the sequences \(u_T \) and \(u_S \) is in \(\ell (A) \), where \(T_u = \{ u_1, u_2, u_3, \ldots \} \) and \(S_u = \{ 0, u_0, u_1, u_2, u_3, \ldots \} \).

\section{The Main Results}

\textbf{Theorem 1.} \(A_v \) is an \(\ell - \ell \) matrix.

\textbf{Proof.} We will show that the Knopp-Lorentz Theorem is satisfied.

Note that:

\[
\sum_{n=0}^{\infty} |a_{nk}| = \sum_{n=0}^{\infty} \left(k + 1 \right) v^n \left(1 - v^n \right)^2
\]

\[
= (k + 1) \sum_{n=0}^{\infty} \left(1 - \left(\frac{1}{n + 2} \right)^q \right)^k \left(\frac{1}{n + 2} \right)^{2q}
\]

\[
= (k + 1) \sum_{n=0}^{\infty} \left((n + 2)^q - 1 \right)^k (n + 2)^{-q(k+2)}
\]

\[
\leq M(k+1) \int_{0}^{\infty} \left(x+2 \right)^q -1 \left(x+2 \right)^{-q(k+2)} \, dx
\]

For some \(M > 0 \). This is possible as both the summation and the integral are finite. Now, we define
where \(q = \frac{1}{p}, \ 0 < p < 1 \). By letting \(2^p = R \) and \(\frac{R - 1}{R} = S \) and using integration by parts repeatedly we can easily deduce that

\[
g(k) = \frac{p(R-1)^k R^{-(k+2-p)}}{k+2-p} + \frac{pk(R-1)^{k-1} R^{-(k+1-p)}}{(k+2-p)(k+1-p)} + \ldots + \frac{pk(k-1)(k-2)\ldots R^{-(2-p)}}{(k+2-p)(k+1-p)(k-p)\ldots(2-p)}
\]

Using the hypothesis that \(q > 1 \), it follows that

\[
g(k) \leq \frac{(R-1)^{k+1} R^{-(k+1)}}{k+1} + \frac{k(R-1)^k R^{-k}}{(k+1)(k)} + \ldots + \frac{k(k-1)(k-2)\ldots(1-R)R^{-1}}{(k+1)(k)(k-1)\ldots1}
\]

By writing the right-hand side of the preceding inequality using the summation notation, we obtain

\[
g(k) \leq \frac{S^{k+1}}{k+1} + \frac{kS^k}{(k+1)k} + \ldots + \frac{k(k-1)\ldots S}{(k+1)k(k-1)\ldots1}
\]

\[
= \frac{S^{k+1}}{k+1} + \frac{S^k}{k+1} + \ldots + \frac{S}{k+1}
\]

By writing the right-hand side of the preceding inequality using the summation notation, we obtain

\[
g(k) \leq \frac{S}{(k+1)} \sum_{i=0}^{k} S^i.
\]

\[
\leq \frac{S}{(k+1)} \sum_{i=0}^{\infty} S^i.
\]

\[
= \frac{S}{(k+1)(1-S)} = \frac{S}{(k+1)(1-S)}.
\]
Consequently, we get
\[\sum_{n=0}^{\infty} |a_{nk}| \leq M(k+1)g(k) \leq \frac{MS(k+1)}{(k+1)(1-S)} = \frac{MS}{1-S} \]

Hence, \(\sup_k \left\{ \sum_{n=0}^{\infty} |a_{nk}| \right\} < \infty \) and by Knopp-Lorentz Theorem [2], \(A_v \) is an \(\ell - \ell \) matrix.

Remark 1. If \(v \) is as defined above, then \(\arcsin(1 - v) \in \ell \).

Note that for \(0 < x < 1 \), we have \(\arcsin x < \frac{x}{\sqrt{1-x^2}} \). Now replacing \(x \) by \((1 - v_n) \) we get
\[\arcsin (1 - v_n) < \frac{(1 - v_n)}{\sqrt{1 - (1 - v_n)^2}} \cdot \]

It is easy to observe that \(\arcsin(1 - v) \in \ell \) as \((1 - v) \in \ell \).

Remark 2. \(\ell (A_v) \) contains unbound sequence. To see this let
\[x_k = (-1)^k \frac{k+2}{2} \cdot \]

Then we have
\[\left| (A_v x)_n \right| = (1 - v_n)^2 \sum_{k=0}^{\infty} (k+1)(-1)^k \frac{k+2}{2} v_n^k \]
\[= (1 - v_n)^2 \left| \sum_{k=0}^{\infty} (-1)^k (k+1) \frac{k+2}{2} v_n^k \right| \]
\[= (1 - v_n)^2 \left(1 + v_n \right)^{-3} \]
\[< (1 - v_n)^2 \left(\frac{1}{n+2} \right)^{2q} \leq \left(\frac{1}{n} \right)^{2q} . \]
Hence \((1 - v)^2 \in \ell\) and this implies that \(x \in \ell \left(A_v\right)\).

Theorem 2. Every \(A_v\) matrix is \(\ell\)-translative for those sequences \(x \in \ell \left(A_v\right)\) for which \(\left\{\frac{x_k}{k}\right\} \in \ell, k = 1, 2, 3, \ldots\).

Proof. Suppose that \(x\) is a sequence in \(\ell \left(A_v\right)\) for which \(\left\{\frac{x_k}{k}\right\} \in \ell\). We show that

1. \(T_x \in \ell \left(A_v\right),\) and
2. \(S_x \in \ell \left(A_v\right),\) where \(T_x\) and \(S_x\) are as defined in Definition 2. Let us first show that (1) holds.

Note that

\[
\left|\left(AT_x\right)_n\right| = \left(1 - v_n\right)^2 \left|\sum_{k=0}^{\infty} (k+1)x_{k+1} \left(v_n\right)^k\right|
\]

\[
= \left(1 - v_n\right)^2 \left(\frac{1}{v_n}\right) \left|\sum_{k=1}^{\infty} kx_k \left(v_n\right)^k\right|
\]

\[
= \left(1 - v_n\right)^2 \left(\frac{1}{v_n}\right) \left|\sum_{k=1}^{\infty} (k+1)x_k \left(v_n\right)^k \left(\frac{k}{k+1}\right)\right|
\]

\[
= \left(1 - v_n\right)^2 \left(\frac{1}{v_n}\right) \left|\sum_{k=1}^{\infty} (k+1)x_k \left(v_n\right)^k \left(1 - \frac{1}{k+1}\right)\right|
\]

\[
\leq A_n + B_n
\]

where

\[
A_n = \left(1 - v_n\right)^2 \left(\frac{1}{v_n}\right) \left|\sum_{k=1}^{\infty} (k+1)x_k \left(v_n\right)^k\right|
\]
and

\[B_n = (1 - v_n) \left(\frac{1}{v_n} \right) \left| \sum_{k=1}^{\infty} \left(k+1 \right) \left(\frac{x_k}{k+1} \right) \left(v_n \right)^k \right| \]

Now if we show that both \(A \) and \(B \) are in \(\ell \), then (1) holds. But the condition that \(A \in \ell \) and \(B \in \ell \) follow easily from the hypotheses that \(x \in \ell (A_x) \) and \(\left\{ \frac{x}{k+1} \right\} \in \ell \), respectively. Next, we show that (2) holds as follows. We have

\[
\left| (AS_x)_n \right| = (1 - v_n)^2 \left| \sum_{k=0}^{\infty} (k+1)x_k \left(v_n \right)^{k+1} \right|
\]

\[
= (1 - v_n)^2 \left| \sum_{k=0}^{\infty} (k+1)x_k \left(v_n \right)^{k+1} \left(\frac{k+2}{k+1} \right) \right|
\]

\[
= (1 - v_n)^2 \left| \sum_{k=0}^{\infty} (k+1)x_k \left(v_n \right)^{k+1} \left(1 + \frac{1}{k+1} \right) \right|
\]

\[
\leq E_n + F_n
\]

where

\[
E_n = (1 - v_n)^2 \left| \sum_{k=0}^{\infty} (k+1)x_k \left(v_n \right)^{k+1} \right|
\]

and

\[
F_n = (1 - v_n)^2 \left| \sum_{k=0}^{\infty} (k+1)x_k \left(v_n \right)^{k+1} \right|
\]

If we show that \(E \) and \(F \) are in \(\ell \), then (2) holds. But the hypotheses that \(x \in \ell (A_x) \) and \(\left\{ \frac{x}{k+1} \right\} \in \ell \) implies that both \(E \) and \(F \) are in \(\ell \), respectively, and hence the theorem follows.
Remark III. The sequence \(x \) defined by \(x_k = \frac{(-1)^k}{k} \) is one of the sequences which satisfies the condition of Theorem 2.

Notation. Suppose \(u \) is a complex number sequence such that

\[
\sum_{k=1}^{\infty} (k+1)x_kv^k < \infty
\]

and let

\[
H_u = \left\{ u : (1-v)^2 \sum_{k=1}^{\infty} (k+1)x_kv^k \rightarrow L(\text{finite}) \text{ as } v \rightarrow 1^- \right\}
\]

Theorem 3. Every \(A_v \) matrix is \(\ell - \text{translative} \) for every sequence \(u \) in \(H_u \cap \ell \left(A_v \right) \).

Proof. Let \(u \in H_u \cap \ell \left(A_v \right) \). Then we will show that

1. \(T_u \in \ell \left(A_v \right) \), and
2. \(S_u \in \ell \left(A_v \right) \), where \(T_u \) and \(S_u \) are as defined in Definition 2. Let us first show that (1) holds.

Note that

\[
\left| (AT_u)_n \right| = (1-v_n)^2 \left| \sum_{k=0}^{\infty} (k+1) u_{k+1} \left(v_n \right)^k \right|
\]

\[
= (1-v_n)^2 \left(\frac{1}{v_n} \right) \left| \sum_{k=0}^{\infty} (k+1) u_{k+1} \left(v_n \right)^{k+1} \right|
\]

\[
= (1-v_n)^2 \left(\frac{1}{v_n} \right) \left| \sum_{k=1}^{\infty} (k+1) u_k \left(v_n \right)^{k} \left(1 - \frac{1}{k+1} \right) \right|
\]
\[\leq A_n + B_n \]

where

\[A_n = (1 - v_n)^2 \left(\frac{1}{v_n} \right) \left| \sum_{k=1}^{\infty} (k+1) u_k (v_n)^k \right| \]

and

\[B_n = (1 - v_n)^2 \left(\frac{1}{v_n} \right) \left| \sum_{k=1}^{\infty} (k+1) \left(\frac{u_k}{k+1} \right) (v_n)^k \right| \]

Now if show that both \(A \) and \(B \) are in \(\ell \), then \((1) \) is proved. But the hypothesis that \(u \in \ell(A) \) implies that \(A \in \ell \) and \(B \in \ell \) will be shown as follows. Note that

\[B_n = (1 - v_n)^2 \left(\frac{1}{v_n} \right) \left| \sum_{k=1}^{\infty} (k+1) \left(\frac{u_k}{k+1} \right) (v_n)^k \right| \]

\[= \frac{(1 - v_n)^2}{(v_n)^2} \left| \sum_{k=1}^{\infty} (k+1) u_k \left(\int_0^{v_n} v^k dv \right) \right| \]

\[= \frac{(1 - v_n)^2}{(v_n)^2} \left| \int_0^{v_n} dv \sum_{k=1}^{\infty} (k+1) u_k v^k \right| \]

The interchanging of the integral and the summation is legitimate as the radius of convergence of the power series \(\sum_{k=1}^{\infty} (k+1) u_k v^k \) is at least 1 and the power series converges absolutely and uniformly \(0 \leq v \leq v_n \).
Now let
\[g(v) = \sum_{k=1}^{\infty} (k+1) u_k v^k. \]

Then we have
\[g(v)(1-v)^2 = (1-v)^2 \sum_{k=1}^{\infty} (k+1) u_k v^k \]
and the assumption that

(i) \[u \in H_v \Rightarrow \lim_{v \to 0^+} g(v)(1-v)^2 = L < \infty \quad \text{for } v \in (0,1) \]

We also have

(ii) \[\lim_{v \to 0} g(v)(1-v)^2 = 0 \]

Thus from (i) and (ii), it follows that
\[\left| g(v)(1-v)^2 \right| \leq M_1, \quad \text{for some } M_1 > 0 \]

Hence we have
\[\left| g(v) \right| \leq M_1 (1-v)^{-2} \]

Consequently, we have
\[B_n = \left(\frac{1-v_n}{v_n} \right)^2 \left| \int_0^{v_n} g(v) dv \right| \]
\[\leq M_2 (1-v_n)^2 \int_0^{v_n} |g(v)| dv \]
\[\leq M_1 M_2 (1-v_n)^2 \int_0^{v_n} (1-v)^{-2} dv \]
\[= M_1 M_2 (1 - v_n) - M_1 M_2 (1 - v_n)^2\]

\[\leq 2 M_1 M_2 (1 - v_n)\]

\[= 2 M_1 M_2 \left(\frac{1}{n + 2}\right)^q\]

\[\leq 2 M_1 M_2 \left(\frac{1}{n}\right)^q\]

So, we have \(B \in \ell\) and hence (1) is proved. Next we show that (2) holds. We have

\[
\left| (AS_n)_n \right| = (1 - v_n)^2 \left| \sum_{k=1}^{\infty} (k + 1)x_{k-1} (v_n)^k \right|
\]

\[
= (1 - v_n)^2 \left| \sum_{k=0}^{\infty} (k + 2)x_k (v_n)^{k+1} \right|
\]

\[
= (1 - v_n)^2 \left| \sum_{k=0}^{\infty} (k + 1)x_k (v_n)^{k+1} \left(\frac{k + 2}{k + 1} \right) \right|
\]

\[
= (1 - v_n)^2 \left| \sum_{k=0}^{\infty} (k + 1)x_k (v_n)^{k+1} \left(1 + \frac{1}{k + 1} \right) \right|
\]

\[\leq E_n + F_n\]

where

\[E_n = (1 - v_n)^2 \left| \sum_{k=0}^{\infty} (k + 1)x_k (v_n)^{k+1} \right|
\]

and

\[F_n = (1 - v_n)^2 \left| \sum_{k=0}^{\infty} (k + 1) \left(\frac{x_k}{k + 1} \right) (v_n)^{k+1} \right|
\]
Now if show that both \(E \) and \(F \) are in \(\ell \), then (2) is proved. But the hypothesis that \(u \in \ell(A_v) \) implies that \(E \in \ell \) and \(F \in \ell \) can be easily shown using the same technique applied in showing \(B \in \ell \) in (1). Hence the theorem follows.

Acknowledgment: I would like to thank Mamite Gebre, Aster Debebe, Yemane Kobessa, Mulatu Hunde, Shimeles Mekonen, Keith Lord, Samera Mulatu, and Abyssinia Mulatu, for their great support and encouragement during my work on this paper.

References

Received: November, 2008