Alcoves of the Non-Weyl Group H_4

Xi-gou Zhang

College of Mathematics and Information Science
JiangXi Normal University, NanChang, 330022, P.R. China
xyzhang71@sohu.com

Abstract. In [5], Shi defines the alcove form of the elements in the affine Weyl groups. In this paper, we define the alcoves of the elements in the non-Weyl group H_4, and we get some results similar to those in [5], then we give some examples in the parabolic subgroup H_3 of H_4. We also get that each left cell in H_3 is left-connected which verify the conjecture (given by Lusztig in [2]) in the case of non-crystallographic Coxeter group.

Keywords: The Coxeter group H_4, the positive root system, the alcoves, left cells, left-connected

1. Notation and notion

Let (W, S) be the Coxeter system with S its Coxeter generator set of rank n, i.e. $S = \{s_1, s_2, \ldots, s_n\}$, with $m(i, j) = o(s_is_j)$ (the order of s_is_j in W) for some $s_i, s_j \in S$. For $w \in W$, we denote by $l(w)$ the length of w.

Let ” \leq ” be the Bruhat ordering of the Coxeter group W which means that for $x, y \in W, x \leq y \iff$ if $y = s_1s_2 \ldots s_r$ is reduced, then $x = s_{i_1}s_{i_2} \ldots s_{i_q}$ for $\{i_1, i_2, \ldots, i_q\}$ is a subsequence of $\{1, 2, \ldots, r\}$.

Let E be the euclidean space spanned by an irreducible root system Φ of type W consisting of unit vectors. Let $\Delta = \{\alpha_1, \alpha_2, \ldots, \alpha_n\}$ be the simple root system corresponding to S, Φ^+ be the corresponding positive root system. It is well known that for $\alpha, \beta \in \Delta$, the inner product $(\alpha, \beta) = \cos \frac{\pi}{m}$, where $m = o(s_\alpha s_\beta), s_\alpha$ (resp. s_β) is the reflection determined by α (resp. β).

For $w \in W$, we associate two subsets of S as below.

$$L(w) = \{s \in S | sw < w\}, \quad R(w) = \{s \in S | ws < w\}. $$
Clearly, \(\mathcal{L}(w) = \mathcal{R}(w^{-1}) \).

3 **Lemma 1.1:** (see [4]) For any Coxeter system \((W, S)\), to each \(s \in S\), we have \(s(\alpha_s) = -\alpha_s\) and \(s(\Phi^+) = \Phi^+ \setminus \{\alpha_s\}\).

By above lemma, we know that each simple reflection permutes the positive root system except the corresponding simple root.

Lemma 1.2: (see [5]) Suppose that \(\{k(w, \alpha)|\alpha \in \Phi^+\}\) is the corresponding alcove for \(w\) in an affine weyl group \(W\). then

1. \(l(w) = \sum_{\alpha \in \Phi^+} |k(w, \alpha)|\), where the notation \(|x|\) stands for the absolute value of \(x\);
2. \(\mathcal{R}(w) = \{s \in S | k(w, \alpha_s) = -1\}\).

Let \(H\) be the Hecke algebra of the Coxeter group \(W\) over \(A = \mathbb{Z}[q^{\frac{1}{2}}, q^{-\frac{1}{2}}]\) (the Laurent polynomial ring in \(\mathbb{Z}\)), with a standard \(A\)–basis \(\{T_w | w \in W\}\). In [3], Kazhdan and Lusztig define another \(A\)–basis \(\{C_w | w \in W\}\) for \(H\) with

\[
C_w = \sum_{x \in w} (-1)^{l(w) - l(x)} q^{(1/2)l(w) - l(x)} P_{x, w}(q^{-1}) T_x
\]

where \(P_{w, w} = 1\) and \(P_{x, w} \in \mathbb{Z}[q]\) has degree \(\leq \frac{1}{2}(l(w) - l(x) - 1)\) if \(x < w\), \(P_{x, w} = 0\), if \(x \notin w\).

The polynomials \(P_{x, w}\) are called Kazhdan–Lusztig polynomials. Also in [3], Kazhdan and Lusztig define several relations on \(W\):

- \(x \prec w\) if \(x < w\), and degree \(P_{x, w} = \frac{1}{2}(l(w) - l(x) - 1)\); \(x \prec w\) if \(x < w\) or \(w < x\);
- \(x \leq_L w\) if there is a sequence \(x = x_0, x_1, ..., x_n = w\), with \(x_{i-1} \prec x_i\) and \(\mathcal{L}(x_{i-1}) \notin \mathcal{L}(x_i)\) for \(1 \leq i \leq n\);
- \(x \leq_R w\) if there is a sequence \(x = x_0, x_1, ..., x_n = w\), with \(x_{i-1} \prec x_i\) and \(\mathcal{R}(x_{i-1}) \notin \mathcal{R}(x_i)\) for \(1 \leq i \leq n\);
- \(x \leq_{LR} w\) if there is a sequence \(x = x_0, x_1, ..., x_n = w\), with \(x_{i-1} \leq_L x_i\) or \(x_{i-1} \leq_R x_i\) for \(1 \leq i \leq n\).

The relation \(\leq_L\) is a preorder on \(W\) whose equivalence classes are the left cells of \(W\). That is, \(x, y \in W\) are in the same left cell, (denoted by \(x \sim_L y\)) if and only if \(x \leq_L y \leq_L x\). The right (resp. two-sided) cells of \(W\) are defined in the same way, with the preorder \(\leq_R\) (resp. \(\leq_{LR}\)) replacing \(\leq_L\).

Lemma 1.3: (see [3]) if \(x \leq_L y\), then \(\mathcal{R}(x) \supset \mathcal{R}(y)\). Thus, if \(x \sim_L y\), then \(\mathcal{R}(x) = \mathcal{R}(y)\).
2. THE ALCOVES IN THE COXETER GROUP H_4

In this and next sections, W always denotes the Coxeter group H_4, $S = \{s_1, s_2, s_3, s_4\}$ with $(s_1 s_2)^5 = (s_1 s_3)^2 = (s_1 s_4)^2 = (s_2 s_3)^2 = (s_2 s_4)^2 = (s_3 s_4)^3 = 1$.

Obviously, the Coxeter group H_3 is a parabolic subgroup of H_4 with generators set $S' = \{s_1, s_2, s_3\} \subseteq S$.

Let $\Delta = \{\alpha s_1, \alpha s_2, \alpha s_3, \alpha s_4\}$ (resp. $\Delta' = \{\alpha s_1, \alpha s_2, \alpha s_3\}$) be the simple root system corresponding to S (resp. S'). Let Φ (resp. Φ') be the root system of H_4 (resp. H_3) and Φ^+ (resp. Φ'^+) be the positive root system corresponding to Δ (resp. Δ'). It is well known that $|\Phi^+| = 60$, $|\Phi'^+| = 15$, where $|\cdot|$ means the cardinality of a set.

We define an alcove corresponding to $w \in W$ as a Φ^+-tuple $\{k(\alpha, w)|\alpha \in \Phi^+\}$ in \mathbb{Z}.

If $w = 1$ (the identity element in W), we define $k(\alpha, w) = 0$ for all $\alpha \in \Phi^+$. And we also define the operators s for $s \in S$ as following.

$$s: \quad k(\alpha, w) \mapsto k(\alpha, ws)$$

$$k(\alpha, ws) = \begin{cases}
 k(s(\alpha), w), & \alpha \neq \alpha_s; \\
 -k(\alpha, w) - 1, & \alpha = \alpha_s.
\end{cases}$$

By recurrence, for any $w \in W$, w is corresponding one-to-one an alcove of $\{k(\alpha, w)|\alpha \in \Phi^+\}$.

For example, if $w = s \in S$ in W, the corresponding general alcove is $\{k(\alpha, w)|\alpha \in \Phi^+\}$ with $k(\alpha_s, w) = -1$ and $k(\alpha, w) = 0$ for all $\alpha \in \Phi^+ \setminus \{\alpha_s\}$.

3. THE RESULTS FOR THE ALCOVES IN H_4

For $w \in W$, $\{k(\alpha, w)|\alpha \in \Phi^+\}$ is the corresponding alcove of w. We have the following results.

Proposition 3.1: For each $w \in W$, $k(\alpha, w) = \begin{cases}
 0; & \text{For all } \alpha \in \Phi^+. \\
 -1. & \text{For } \alpha = \alpha_s.
\end{cases}$

It is obvious by the definition of the alcove in above section.

Theorem 3.2: For $w \in W$, $\{k(\alpha, w)|\alpha \in \Phi^+\}$ is the corresponding alcove of w. Then we have

1. $l(w) = \Sigma_{\alpha \in \Phi^+} |k(\alpha, w)|$;
2. $R(w) = \{s \in S|k(\alpha_s, w) = -1\}$.

Proof: Proceed by induction on $l(w) = r$.
If \(l(w) = 0 \), it is trivial. If \(l(w) = 1 \), then \(w = s \) for some \(s \in S \), the results follows by the remark of above section. Now suppose \(l(w) > 1 \), we can write \(w = w_1s \) for some \(s \in S \) and \(l(w) = l(w_1) + 1 \).

By induction, \(l(w_1) = \sum_{\alpha \in \Phi^+} k(\alpha, w_1) \); \(\mathcal{R}(w_1) = \{ s \in S | k(\alpha, w_1) = -1 \} \).

By Proposition 3.1, \(k(\alpha_s, w_1) = 0 \) since \(s \notin \mathcal{R}(w_1) \). Then by the definition of the alcove, we have \(k(\alpha_s, w) = -1 \) and \(\sum_{\alpha \in \Phi^+ \setminus \{ \alpha_s \}} k(\alpha, w) = \sum_{\alpha \in \Phi^+ \setminus \{ \alpha_s \}} k(\alpha, w_1) \).

So \(\sum_{\alpha \in \Phi^+} k(\alpha, w) = \sum_{\alpha \in \Phi^+} k(\alpha, w_1) + 1 = l(w_1) + 1 \). Thus (1) is true for all \(w \in W \).

If \(s' \in \mathcal{R}(w_1) \), i.e. \(k(\alpha_{s'}, w_1) = -1 \). Two cases are possible.

In case \(s's = ss' \), clearly \(s' \in \mathcal{R}(w) \) and \(k(\alpha_{s'}, w) = k(\alpha_{s'}, w_1) = -1 \) by the definition.

In case \(s's \neq ss' \), we can consider \(k(\alpha, w) \) as \(w \) is in the dihedral group generated by \(\{ s, s' \} \). If \(s' \in \mathcal{R}(w) \), so \(k(\alpha_{s'}, w) = -1 \). And suppose \(s' \notin \mathcal{R}(w) \), so \(k(\alpha_{s'}, w) = 0 \).

Thus (2) follows.

Corollary 3.3: Let \(w_0 \) be the longest element in \(W \), then \(k(\alpha, w_0) = -1 \) for all \(\alpha \in \Phi^+ \).

By Theorem 3.2(1), Proposition 3.1 and \(l(w_0) = |\Phi^+| \), it is true.

4. **The Example:** \(H_3 \)

In this and next sections, \(W \) always denotes the Coxeter group \(H_3 \). In this section, we give the explanations in \(W \) as examples. It is well known that \(S' = \{ s_1, s_2, s_3 \} \subseteq S \). Let \(\Delta' = \{ \alpha_{s_1}, \alpha_{s_2}, \alpha_{s_3} \} \) be the simple root system corresponding to \(S' \). Set \(b := \cos \frac{\pi}{5} = \frac{\sqrt{5} + 1}{4} \), then \(4b^2 = 2b + 1 \).

We arrange these positive roots as a \(5 \times 3 \)-matrix for practice.

\[
\begin{pmatrix}
\alpha_1 & \alpha_2 & \alpha_3 \\
\alpha_4 & \alpha_5 & \alpha_6 \\
\alpha_7 & \alpha_8 & \alpha_9 \\
\alpha_{10} & \alpha_{11} & \alpha_{12} \\
\alpha_{13} & \alpha_{14} & \alpha_{15}
\end{pmatrix}
\]

where \(\alpha_1 = \alpha_{s_1}, \alpha_2 = \alpha_{s_2}, \alpha_3 = \alpha_{s_3}, \alpha_4 = 2b\alpha_1 + \alpha_2, \alpha_5 = \alpha_1 + 2b\alpha_2, \alpha_6 = \alpha_2 + \alpha_3, \alpha_7 = 2b(\alpha_1 + \alpha_2), \alpha_8 = 2b\alpha_1 + \alpha_2 + \alpha_3, \alpha_9 = \alpha_1 + 2b(\alpha_2 + \alpha_3), \alpha_{10} = 2b(\alpha_1 + \alpha_2 + \alpha_3), \alpha_{11} = 2b\alpha_1 + (2b + 1)\alpha_2 + \alpha_3, \alpha_{12} = 2b\alpha_1 + (2b + 1)\alpha_2 + 2b\alpha_3, \alpha_{13} = (2b + 1)(\alpha_1 + \alpha_2) + \alpha_3, \alpha_{14} = (2b + 1)(\alpha_1 + \alpha_2) + 2b\alpha_3, \alpha_{15} = (2b + 1)\alpha_1 + 4b\alpha_2 + 2b\alpha_3. \)
By the definition, each simple reflection acts on the general alcove as following.

\[s_1 : \begin{pmatrix}
\alpha_1 & \alpha_2 & \alpha_3 \\
\alpha_4 & \alpha_5 & \alpha_6 \\
\alpha_7 & \alpha_8 & \alpha_9 \\
\alpha_{10} & \alpha_{11} & \alpha_{12} \\
\alpha_{13} & \alpha_{14} & \alpha_{15}
\end{pmatrix}
\mapsto\begin{pmatrix}
-\alpha_1 - 1 & \alpha_4 & * \\
\alpha_2 & \alpha_7 & \alpha_8 \\
\alpha_5 & \alpha_6 & \alpha_{10} \\
\alpha_9 & \alpha_{13} & \alpha_{14} \\
\alpha_{11} & \alpha_{12} & *
\end{pmatrix}.\]

\[s_2 : \begin{pmatrix}
\alpha_1 & \alpha_2 & \alpha_3 \\
\alpha_4 & \alpha_5 & \alpha_6 \\
\alpha_7 & \alpha_8 & \alpha_9 \\
\alpha_{10} & \alpha_{11} & \alpha_{12} \\
\alpha_{13} & \alpha_{14} & \alpha_{15}
\end{pmatrix}
\mapsto\begin{pmatrix}
\alpha_5 & -\alpha_2 - 1 & \alpha_6 \\
\alpha_7 & \alpha_1 & \alpha_3 \\
\alpha_4 & \alpha_{11} & * \\
\alpha_{12} & \alpha_8 & \alpha_{10} \\
* & \alpha_{15} & \alpha_{14}
\end{pmatrix}.\]

\[s_3 : \begin{pmatrix}
\alpha_1 & \alpha_2 & \alpha_3 \\
\alpha_4 & \alpha_5 & \alpha_6 \\
\alpha_7 & \alpha_8 & \alpha_9 \\
\alpha_{10} & \alpha_{11} & \alpha_{12} \\
\alpha_{13} & \alpha_{14} & \alpha_{15}
\end{pmatrix}
\mapsto\begin{pmatrix}
* & \alpha_6 & -\alpha_3 - 1 \\
\alpha_8 & \alpha_9 & \alpha_2 \\
\alpha_{10} & \alpha_4 & \alpha_5 \\
\alpha_7 & \alpha_{12} & \alpha_{11} \\
\alpha_{14} & \alpha_{13} & *
\end{pmatrix}.\]

where the entries in the * position unchanged.

So, some elements in \(H_3 \) and their corresponding alcove are listed as below.

\[1 \leftrightarrow \begin{pmatrix}
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{pmatrix} ;

s_1 \leftrightarrow \begin{pmatrix}
-1 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{pmatrix} ;

s_2 \leftrightarrow \begin{pmatrix}
0 & -1 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{pmatrix} ;

s_3 \leftrightarrow \begin{pmatrix}
0 & 0 & -1 \\
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{pmatrix} ;

s_1s_2 \leftrightarrow \begin{pmatrix}
0 & -1 & 0 \\
0 & 1 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{pmatrix} ;

s_2s_1 \leftrightarrow \begin{pmatrix}
-1 & 0 & 0 \\
-1 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{pmatrix} ;

w_0 \leftrightarrow \begin{pmatrix}
-1 & -1 & -1 \\
-1 & -1 & -1 \\
-1 & -1 & -1 \\
-1 & -1 & -1
\end{pmatrix} ;
where 1 is the identity element and \(w_0 \) is the longest element in \(W \).

5. The cells in the Coxeter group \(H_3 \)

In [1], D. Alvis gives the left cells and two-sided cells of the Coxeter group \(H_4 \) by computing the Kazhdan-Lusztig polynomials. In this paper, we give the left cells by using the general alcoves in \(H_3 \). From Lemma 1.3, we can give the left cells in the set \(W_J = \{ w \in W | \mathcal{R}(w) = J \} \) with \(J \subseteq S' \), \(X^* = w_0 \cdot X \) where \(w_0 \) is the longest element in \(W \).

First, definite \(W_0 := W_{\varnothing} \)

\[
W_1^{(1)} = \{1, 21, 121, 321, 2121, 32121\}, \\
W_1^{(2)} = \{3121, 23121, 123121, 2123121, 32123121\}, \\
W_1^{(3)} = \{232121, 1232121, 21232121, 121232121\}, \\
W_1^{(4)} = \{321232121, 1321232121, 21321232121, 121321232121\}; \\
W_2^{(1)} = \{2, 12, 32, 212, 1212, 3212\}, W_2^{(2)} = \{312, 2312, 12312, 212312, 3212312\}, \\
W_2^{(3)} = \{31212, 231212, 1231212, 21231212, 321231212\}, \\
W_2^{(4)} = \{2321212, 12321212, 212321212, 1212321212\}, \\
W_2^{(5)} = \{3212321212, 13212321212, 213212321212, 1213212321212\}, \\
W_2^{(6)} = \{121231212, 3121231212, 2131231212, 321231231212, 212312312312\}; \\
W_3^{(1)} = \{3, 23, 123, 2123, 12123, 32123\}, \\
W_3^{(2)} = \{312123, 2312123, 12312123, 2123123123, 3212312123\},
\]

where for the sake of simplifying the notation, denote by \(i \) the reflection \(s_i (i = 1, 2, 3) \).

Obviously, \(W_{(1)} = \cup_{i=1}^{2} W_1^{(i)}, \ W_{(2)} = \cup_{i=1}^{6} W_2^{(i)}, \ W_{(3)} = \cup_{i=1}^{2} W_3^{(i)}, \ W_{(1,2)} = W^{*} \), \(W_{(1,3)} = W_{*}^{*} \), \(W_{(2,3)} = W_{*}^{*} \), \(W_{(1,2,3)} = W_{*}^{*} \).

we have

Theorem 5.1: The left cells of \(W \) are the subsets \(W_i^{(j)} \), \((W_i^{(j)})^* \). Thus, there are 26 left cells in \(W \).

A subset \(K \) of any Coxeter group \(W \) is left-connected (resp., right-connected), if for any \(x, y \in K \), there exists a sequence of elements \(x_0 = x, x_1, \ldots, x_r = y \) in \(K \) with some \(r \geq 0 \) such that \(x_{i-1}x_i^{-1} \in S \) (resp., \(x_i^{-1}x_{i+1} \in S \) for \(1 \leq i \leq r \). Lusztig conjectured in [2] that if \(W \) is an affine Weyl group then any left cell \(L \) of \(W \) is left-connected. In [6], Shi and author verify the conjecture in the case of the left cells with \(a \)-value 4 in the affine Weyl groups \(\widetilde{E}_i (i = 6, 7, 8) \) and the conjecture is supported by all the existing data.
From the above construction of left cells in H_3, we get the following result which verify the conjecture in the case of non-Weyl group.

Corollary 5.2: Each left cell of H_3 is left-connected.

References

[6] J. Y. Shi and X.G. Zhang, Left cells with a-value 4 in the affine weyl groups $\tilde{E}_i (i = 6, 7, 8)$, Comm. in Algebra, 36 (2008), 3317-3346;

Received: November, 2008