On the Involutes of the Spacelike Curve with a Timelike Binormal in Minkowski 3-Space

Mustafa Bilici
Amasya Üniversitesi, Merzifon Meslek Yüksekokulu
05300 Merzifon, Amasya, Turkey
mustafa.bilici@amasya.edu.tr

Mustafa Çalışkan
Ondokuz Mayıs Üniversitesi, Fen Edebiyat Fakültesi
Matematik Bölümü, 55139 Kurupelit, Samsun, Turkey
caliskan@omu.edu.tr

Abstract

The involute of a given curve is a well-known concept in 3-dimensional Euclidean space \mathbb{R}^3 (see [7],[8]).

According to reference [6], M_1 is a timelike curve then the involute curve M_2 is a spacelike curve with a spacelike or timelike binormal. On the other hand, it has been investigated the involute and evolute curves of the spacelike curve M_1 with a spacelike binormal in Minkowski 3-space and it has been seen that the involute curve M_2 is timelike, [1].

In this paper, we have defined the involute curves of the spacelike curve M_1 with a timelike binormal in Minkowski 3-space \mathbb{R}^3_1. We have seen that the involute curve M_2 must be a spacelike curve with a spacelike or timelike binormal.

The relationship between the Frenet frames of the involute-evolute curve couple and some new characterizations with relation to the curve couple have been found.

Mathematics Subject Classification(2000): 53A04, 53B30

Keywords: Minkowski space, involute-evolute curve couple, Frenet frames
1. INTRODUCTION

Let Minkowski 3-space \mathbb{IR}^3 be the vector space \mathbb{IR}^3 provide with the Lorentzian inner product g given by $g(X,X) = -x_1^2 + x_2^2 + x_3^2$, where $X = (x_1,x_2,x_3) \in \mathbb{IR}^3$.

A vector $X = (x_1,x_2,x_3) \in \mathbb{IR}^3$ is said to be timelike if $g(X,X) < 0$, spacelike if $g(X,X) > 0$ and lightlike (or null) if $g(X,X) = 0$. Similarly, an arbitrary curve $\alpha = \alpha(s)$ in \mathbb{IR}^3 where s is a pseudo-arclenght parameter, can locally be timelike spacelike or null (lightlike), if all of its velocity vectors $\alpha'(s)$ are respectively timelike, spacelike or null, for every $s \in I \subset \mathbb{IR}$. A lightlike vector X is said to be positive (resp. negative) if and only if $x_1 > 0$ (resp. $x_1 < 0$) and a timelike vector X is said to be positive (resp. negative) if and only if $x_1 < 0$ (resp. $x_1 > 0$). The norm of a vector X is defined by $\|X\|_L = \sqrt{g(X,X)}$.

The vectors $X = (x_1,x_2,x_3), Y = (y_1,y_2,y_3) \in \mathbb{IR}^3$ are orthogonal if and only if $g(X,Y) = 0$, [7].

Now let X and Y be two vectors in \mathbb{IR}^3, then the Lorentzian cross product is given by

$$X \times Y = (x_1y_2 - x_2y_1, x_2y_3 - x_3y_2, x_3y_1 - x_1y_3), \quad [5].$$

We denote by $\{T(s), N(s), B(s)\}$ the moving Frenet frame along the curve α. Then T, N and B are the tangent, the principal normal and the binormal vector of the curve α, respectively. Depending on the causal character of the curve α, we have the following Frenet formulae and instantaneous rotation vectors:

i) Let α be a unit speed timelike space curve with curvature κ and torsion τ. Let Frenet frames of α be $\{T, N, B\}$.

In this trihedron, T is timelike vector, N and B are spacelike vectors. For this vectors, we can write

$$T \times N = -B, \quad N \times B = T, \quad B \times T = -N,$$

where \times is the Lorentzian cross product, [5] in space \mathbb{IR}^3. In this situation, the Frenet formulas are given by

$$T' = \kappa N, \quad N' = \kappa T - \tau B, \quad B' = \tau N, \quad [4].$$

The Frenet instantaneous rotation vector for the timelike curve is given by

$$W = \tau T - \kappa B, \quad [2].$$

ii) Let α be a unit speed spacelike space curve with a spacelike binormal. In this trihedron, we assume that T and B spacelike vectors and N timelike vector. In this situation,

$$T \times N = -B, \quad N \times B = -T, \quad B \times T = N,$$

The Frenet formulas are given by
Involutes of the spacelike curve 1499

\[T' = \kappa N, \quad N' = \kappa T + \tau B, \quad B' = \tau N, \quad [4]. \]

The Frenet instantaneous rotation vector for the spacelike curve is given by
\[W = -\tau T + \kappa B, \quad [2]. \]

\(\text{iii) Let } \alpha \text{ be a unit speed spacelike space curve. In this trihedron, we assume that } T \text{ and } N \text{ spacelike vektors and } B \text{ timelike vector. For this trihedron we write} \]
\[T \times N = B, \quad N \times B = -T, \quad B \times T = -N, \]

The Frenet formulas are given by
\[\tau = \frac{\alpha' \times \alpha''}{\|\alpha'\|}, \quad \kappa = \frac{\det(\alpha', \alpha'', \alpha''')}{\|\alpha'\times\alpha''\|^2}. \]

Lemma 1. Let X and Y be nonzero Lorentz orthogonal vektors in \(IR^3 \). If X is timelike, then Y is spacelike, [8].

Lemma 2. Let X, Y be positive (negative) timelike vectors in \(IR^3 \). Then \(g(X, Y) \leq \|X\|\|Y\| \) with equality if and only if X and Y are linearly dependent, [8].

Lemma 3. i) The Timelike Angle between Timelike Vectors
Let X and Y be positive (negative) timelike vectors in \(IR^3 \). By the Lemma 2, there is a unique nonnegative real number \(\varphi(X, Y) \) such that
\[g(X, Y) = \|X\|\|Y\| \cosh \varphi(X, Y) \]

The Lorentzian timelike angle between X and Y is defined to be \(\varphi(X, Y) \).

ii) The Spacelike Angle between Spacelike Vectors
Let X and Y be spacelike vektors in \(IR^3 \) that span a spacelike vector subspace. Then we have \(|g(X, Y)| \leq \|X\|\|Y\| \). Hence, there is a unique real number \(\varphi(X, Y) \) between 0 and \(\pi \) such that
\[g(X, Y) = \|X\|\|Y\| \cos \varphi(X, Y) \]

The Lorentzian spacelike angle between X and Y is defined to be \(\varphi(X, Y) \).

iii) The Timelike Angle between Spacelike Vectors
Let X and Y be spacelike vectors in \(IR^3 \) that span a timelike vector subspace. Then we have \(|g(X, Y)| > \|X\|\|Y\| \). Hence, there is a unique positive real number \(\varphi(X, Y) \) such that
\[|g(X, Y)| = \|X\|\|Y\| \cosh \varphi(X, Y) \]

The Lorentzian timelike angle between X and Y is defined to be \(\varphi(X, Y) \).

iv) The Angle between Spacelike and Timelike Vectors
Let X be a spacelike vector and Y a positive timelike vector in \(IR^3 \). Then there is a unique nonnegative real number \(\varphi(X, Y) \) such that
\[|g(X,Y)| = \|X\|\|Y\| \sinh \varphi(X,Y). \]

The **Lorentzian timelike angle** between \(X\) and \(Y\) is defined to be \(\varphi(X,Y)\), [8].

2. THE INVOLUTE OF THE SPACELIKE CURVE WITH A TIMELIKE BINORMAL IN \(IR^3\)

Definition 1. Let \(M_1, M_2 \subset IR^3\) be two curves which are given by \((I, \alpha)\) and \((I, \beta)\) coordinate neighbourhoods, resp. Let Frenet frames of \(M_1\) and \(M_2\) be \([T, N, B]\) and \([T^*, N^*, B^*]\), resp. \(M_2\) is called the involute of \(M_1\) \((M_1\) is called the evolute of \(M_2\)) if

\[g(T, T^*) = 0. \] (6)

If \(M_1\) is a unit speed spacelike curve with a timelike binormal then the involute curve \(M_2\) must be a spacelike curve with a spacelike or timelike binormal. In this situation, the causal characteristic of the Frenet frames of the curves \(M_1\) and \(M_2\) must be of the form

\[\{T \text{ spacelike}, N \text{ spacelike}, B \text{ timelike}\} \]

and

\[\{T^* \text{ spacelike}, N^* \text{ timelike}, B^* \text{ spacelike}\} \text{ or } \{T^* \text{ spacelike}, N^* \text{ spacelike}, B^* \text{ timelike}\}. \]

So we can write

\[g(T^*, T^*) = +1, \quad g(N^*, N^*) = \mp I = \varepsilon_\alpha, \quad g(B^*, B^*) = \mp I = \varepsilon_\alpha. \] (7)

Definition 2. (Unit Vectors \(C\) of Direction \(W\) for Nonnull Curves):

\(i)\) For the curve \(M_i\) with a timelike tangent, \(\theta\) being a Lorentzian timelike angle between the spacelike binormal unit vector \(-B\) and the Frenet instantaneous rotation vector \(W\),

\(a)\) If \(|\kappa| > |\tau|\), then \(W\) is a spacelike vector. In this situation, from the Lemma 3. \(iii)\) we can write

\[\begin{aligned}
\kappa &= \|W\| \cosh \theta, \\
\tau &= \|W\| \sinh \theta,
\end{aligned} \]

\[\|W\|^2 = g(W, W) = \kappa^2 - \tau^2 \] (8)

and

\[C = \frac{W}{\|W\|} = \sinh \theta T - \cosh \theta B, \] (9)

where \(C\) is unit vector of direction \(W\).

\(b)\) If \(|\kappa| < |\tau|\), then \(W\) is a timelike vector. In this situation, from the Lemma 3.\(iv)\) we can write

\[\begin{aligned}
\kappa &= \|W\| \sinh \theta, \\
\tau &= \|W\| \cosh \theta,
\end{aligned} \]

\[\|W\|^2 = -g(W, W) = -(\kappa^2 - \tau^2) \] (10)

and

\[C = \cosh \theta T - \sinh \theta B. \] (11)
Involutes of the spacelike curve

\textit{ii) } For the curve M_i with a timelike principal normal, θ being an angle between the B and the W, if B and W spacelike vectors that span a spacelike vector subspace then by the Lemma 3. \textit{ii)} we can write

\[\kappa = \|W\| \cos \theta, \quad \tau = \|W\| \sin \theta, \quad \|W\|^2 = g(W, W) = \kappa^2 + \tau^2. \]

(12)

and

\[C = -\sin \theta T + \cos \theta B \]

(13)

\textit{iii) } For the curve M_i with a timelike binormal, θ being a Lorentzian timelike angle between the B and the W,

\textbf{a)} If $|\tau| > |\kappa|$, then W is a spacelike vector. From the Lemma 3.\textit{iv)} , we can write

\[\kappa = \|W\| \sinh \theta, \quad \tau = \|W\| \cosh \theta, \quad g(W, W) = \|W\|^2 = (\tau^2 - \kappa^2) \]

(14)

and

\[C = \cosh \theta T - \sinh \theta B \]

(15)

\textbf{b)} If $|\tau| < |\kappa|$, then W is a timelike vector. In this situation, from the Lemma 3.\textit{i)} we have

\[\kappa = \|W\| \cosh \theta, \quad \tau = \|W\| \sinh \theta, \quad g(W, W) = -\|W\|^2 = -(\tau^2 - \kappa^2) \]

(16)

and

\[C = \sinh \theta T - \cosh \theta B . \]

(17)

\textbf{Theorem 1.} Let (M_2, M_1) be the involute-evolute curve couple which are given by $(1, \alpha)$ and $(1, \beta)$ coordinate neighbourhoods, respectively. The distance between the points $\alpha(s) \in M_1$ and $\beta(s) \in M_2$ of the (M_2, M_1) is given by

\[d_{\text{II}}(\alpha(s), \beta(s)) = |c - s|, \quad c = \text{const} \quad \forall s \in I . \]

\textbf{Proof:} If M_2 is the involute of M_1, we have

$\beta(s) = \alpha(s) + \lambda T(s), \quad \lambda = c - s, \quad \alpha' = T .$

Let us derivative both side with respect to s:

\[\frac{d\beta}{ds} = \frac{d\alpha}{ds} + \frac{d\lambda}{ds} T + \lambda \frac{dT}{ds} . \]

For being $\frac{dT}{ds} = T' = \kappa N ,$

\[\frac{d\beta}{ds} = \left(I + \frac{d\lambda}{ds} \right) T + \lambda \kappa N \]

where s and s^\ast are arc parameter of M_1 and M_2, respectively. Thus we have

\[T^\ast \frac{ds^\ast}{ds} = \left(I + \frac{d\lambda}{ds} \right) T + \lambda \kappa N . \]

Making inner product with T this equation’s both side, we have
\[
\frac{ds^*}{ds} g(T, T^*) = \left(1 + \frac{d\lambda}{ds}\right) g(T, T) + \lambda g(N, T)
\]

From the definition of the involute-evolute curve couple, \(g(T, T^*) = 0 \). If \(M_1 \) is a spacelike then we can write \(g(T, T) = +1 \) and \(g(T, N) = 0 \). Thus we obtain
\[
1 + \frac{d\lambda}{ds} = 0 \Rightarrow \lambda = c - s, \quad c = \text{const}
\]

From the definition of the distance in the Lorentzian space, we easily find
\[
d_{i\alpha}(\alpha(s), \beta(s)) = ||\beta(s) - \alpha(s)|| = ||\alpha||\tau||, \quad \tau = |c - s|.
\]

Theorem 2. Let \((M_2, M_1)\) be the involute-evolute curve couple which are given by \((1, \alpha)\) and \((1, \beta)\) coordinate neighbourhoods, respectively. Let Frenet frames of \(M_1\) and \(M_2\), in the points \(\alpha(s) \in M_1\) and \(\beta(s) \in M_2\), be \(\{T, N, B\}\) and \(\{T^*, N^*, B^*\}\), respectively. For the curvature and torsion of curve \(M_2\), we have
\[
\kappa^{*2} = \frac{\epsilon_0 (\kappa^2 - \tau^2)}{(c - s)^2 \kappa^2}, \quad \tau^* = \frac{\kappa \tau^2}{\left(c - s \kappa \tau^2 - \kappa^2\right)}.
\]

Proof: If \(M_2\) is the involute of \(M_1\), we have
\[
\beta(s) = \alpha(s) + AT(s), \quad \lambda = c - s, \quad \alpha' = T.
\]
Let us derivative both side with respect to \(s\):
\[
\frac{d\beta}{ds} \frac{ds^*}{ds} - \frac{d\beta^*}{ds} \frac{ds^*}{ds} = T^* \frac{ds^*}{ds} = (c - s)\kappa N, \quad (19)
\]
where \(s\) and \(s^*\) are arc parameter of \(M_1\) and \(M_2\), respectively. We can find
\[
\frac{ds^*}{ds} = (c - s)\kappa \quad (20)
\]
thus we have
\[
T^* = N. \quad (21)
\]
Taking the derivative of the last equation
\[
\frac{dT^*}{ds} \frac{ds^*}{ds} = \frac{dN}{ds} \frac{ds^*}{ds} = \kappa T - \tau B, \\
\kappa^* N^* = \left(-\kappa T + \tau B\right) \frac{ds^*}{ds}, \\
\kappa^* g(N^*, N^*) = \left[\kappa^* g(T, T) + \tau^2 g(B, B)\left(\frac{ds^*}{ds}\right)^2\right].
\]
From the equations (6), (7) and (20), we have
\[
\kappa^{*2} \epsilon_0 = \left(\kappa^2 - \tau^2\right) \frac{1}{(c - s)^2 \kappa^2},
\]
Involutes of the spacelike curve

\[\kappa'^2 = \frac{\varepsilon_0 (\kappa^2 - \tau^2)}{(c - s)^2 \kappa^2}. \]

From the equation (19) we can write

\[\beta' = (c - s) \kappa N \]

and

\[\beta'' = -(c - s) \kappa^2 T + ((c - s) \kappa' - \kappa) N + (c - s) \kappa \pi B. \] \hspace{1cm} (22)

If we calculate vector \(\beta' \times \beta'' \), then we get

\[\beta' \times \beta'' = -(c - s)^2 \kappa^2 \tau T + (c - s)^2 \kappa^4 B, \] \hspace{1cm} (23)

\[\| \beta' \times \beta'' \|_H = |c - s|^2 \| \kappa' \| \tau^2 - \kappa^2 |. \] \hspace{1cm} (24)

If we take the derivative of equation (22) we have

\[\beta'' = (2 \kappa'' - 3 \lambda \kappa \kappa') T + (- \lambda \kappa'' - 2 \kappa' + \lambda \kappa + \lambda \kappa') N + (2 \lambda \kappa' - 2 \kappa' + \lambda \kappa \tau') B \]

From the Lemma 1, we find

\[\text{det}(\beta', \beta'', \beta''') = (c - s)^3 \tau' - (c - s)^3 \kappa^4 \kappa' \tau. \] \hspace{1cm} (25)

For being \(\tau^* \), from the equations (24) and (25), we get

\[\tau^* = \frac{(c - s)^3 \kappa^3 (\kappa' - \kappa') {\kappa \tau' - \kappa'}}{|c - s|^3 \| \kappa' \| \tau^2 - \kappa^2 |}. \]

Theorem 3. Let \((M_2, M_1) \) be the involute-evolute curve couple. The Frenet vectors of the curve couple \((M_2, M_1) \) as follow.

(1) If \(W \) is a spacelike vector \(|\mathbf{A}| < |\mathbf{r}| \), then

\[
\begin{bmatrix}
T^* \\
N^* \\
B^*
\end{bmatrix} =
\begin{bmatrix}
0 & 1 & 0 \\
\sinh \theta & 0 & -\cosh \theta \\
-\cosh \theta & 0 & \sinh \theta
\end{bmatrix}
\begin{bmatrix}
T \\
N \\
B
\end{bmatrix}. \] \hspace{1cm} (26)

(2) If \(W \) is a timelike vector \(|\mathbf{A}| > |\mathbf{r}| \), then

\[
\begin{bmatrix}
T^* \\
N^* \\
B^*
\end{bmatrix} =
\begin{bmatrix}
0 & 1 & 0 \\
-\cosh \theta & 0 & \sinh \theta \\
-sinh \theta & 0 & \cosh \theta
\end{bmatrix}
\begin{bmatrix}
T \\
N \\
B
\end{bmatrix}. \] \hspace{1cm} (27)

Proof: (1) If \(M_2 \) is the involute of \(M_1 \), we have

\[\beta(s) = \alpha(s) + \lambda T(s), \quad \lambda = c - s, \quad \alpha' = T \ (c = \text{constant}). \]

From the equation (21) we have

\[T^* = N. \]

For being \(B^* = \frac{1}{\| \beta' \times \beta'' \|_H} (\beta' \times \beta'') \), from the equations (23) and (24), we obtain
\[B^* = -\frac{\tau}{\sqrt{\tau^2 - \kappa^2}} T + \frac{\kappa}{\sqrt{\tau^2 - \kappa^2}} B, \]

Substituting (14) into the last equation, we obtain
\[B^* = -\cosh \theta T + \sinh \theta B. \quad (28) \]

Since \(N^* = -(B^* \times T^*), \) then we have
\[N^* = \sinh \theta T - \cosh \theta B. \quad (29) \]

If the equations (21), (28), (29) are written by matrix form, then the theorem is proved.

Note: In this situation, the causal characteristics of the Frenet frames of the curves \(M_1 \) and \(M_2 \) are
\[\{T \text{ spacelike, } N \text{ spacelike, } B \text{ timelike}\} \]
and
\[\{T^* \text{ spacelike, } N^* \text{ spacelike, } B^* \text{ timelike}\}. \]

Theorem 4. Let \((M_2, M_1) \) be be the involute-evolute curve couple. If \(W \) and \(W^* \) are the Frenet instantaneous rotation vectors of \(M_1 \) and \(M_2 \) respectively, then

(i) \[W^* = \frac{1}{|c - s|\kappa} (\theta' N - W), \quad (|\kappa| > |\tau|) \]

and

(ii) \[W^* = \frac{1}{|c - s|\kappa} (\theta' N + W), \quad (|\kappa| < |\tau|) \]

Proof: (i) For the Frenet instantaneous rotation vector of the curve \(M_2 \), from the equation (3) we can write
\[W^* = -\tau^* T^* + \kappa^* B^* \quad (30) \]

Using the equations (18), (26) in the equation (30), we have
\[W^* = -\frac{\kappa \tau' - \kappa' \tau}{|c - s|\kappa |\tau^2 - \kappa^2|} N + \frac{\sqrt{|\tau^2 - \kappa^2|}}{|c - s|\kappa} (-\cosh \theta T + \sinh \theta B) \]

\[W^* = \frac{\left(\frac{\kappa}{\tau}\right)^{\tau^2}}{|c - s|\kappa |\tau^2 - \kappa^2|} N + \frac{|W|}{|c - s|\kappa} (-\cosh \theta T + \sinh \theta B). \]

Using the equation (14) in the last equation, then we obtain
\[W^* = \frac{1}{|c - s|\kappa} (\theta' N - (\tau T - \kappa B)); \]

and then, we get
Involutes of the spacelike curve

\[W^* = \frac{1}{|c - s|\kappa}(\theta' N - W). \]

(ii) The proof is analogous to the proof of the statement (i).

Theorem 5. Let \((M_2, M_1)\) be a first type involute-evolute curve couple. If \(C\) and \(C^*\) are unit vectors of direction of \(W\) and \(W^*\), respectively, then we have

\[(i) \quad C^* = -\frac{\theta'}{\sqrt{\theta'^2 + \kappa^2 - \tau^2}} N + \frac{\sqrt{\kappa^2 - \tau^2}}{\sqrt{\theta'^2 + \kappa^2 - \tau^2}} C, \quad (\text{for } |\kappa| > |\tau|) \]

\[(ii) \quad C^* = \frac{\theta'}{\sqrt{\theta'^2 + \kappa^2 - \tau^2}} N + \frac{\sqrt{\tau^2 - \kappa^2}}{\sqrt{\theta'^2 + \kappa^2 - \tau^2}} C, \quad (\text{for } |\kappa| < |\tau|) \]

Proof: (i) Let \(\theta^*\) be the angle between \(B^*\) and \(W^*\). Then we can write

\[C^* = -\sinh \theta^* T^* + \cosh \theta^* B^*. \quad (31) \]

For the curvatures and torsions of the curve \(M_2\), we have

\[\begin{align*}
\kappa^* &= \|W^*\| \cosh \theta^* \\
\tau^* &= \|W^*\| \sinh \theta^*
\end{align*} \quad (32) \]

Using the equation (18) and Theorem 4. into the equation (32), we get

\[\sinh \theta^* = \frac{\theta'}{\sqrt{\theta'^2 + \kappa^2 - \tau^2}}, \quad (33) \]

\[\cosh \theta^* = \frac{\sqrt{\kappa^2 - \tau^2}}{\sqrt{\theta'^2 + \kappa^2 - \tau^2}}. \quad (34) \]

Substituting by the equations (33), (34) into the equation (31), the theorem is proved.

(ii) The proof is analogous to the proof of the statement (i).

Corollary 1. Let \((M_2, M_1)\) be the first type involute-evolute curve couple. If \(M_1\) evolute curve is helix, then

i) The vectors \(W^*\) and \(B^*\) of the involute curve \(M_2\) are linearly dependent.

ii) \(C = C^*\)

Proof: i) If \(M_1\) evolute curve is helix, then we have

\[\frac{\tau}{\kappa} = \tanh \theta = \text{constant}. \]

and then we have

\[\theta' = 0. \quad (35) \]

Substituting by the equation (35) into the equations (33), (34)

\[\sinh \theta^* = 0 \]
\[\cosh \theta^* = 1 \]

are found. Thus we have
\(\theta^* = 0 \).

ii) Substituting by the equation (35) into the Theorem 5., we have

\[C = C^* \]

Theorem 6. Let \((M_2, M_1)\) be the first type involute-evolute curve couple. Let curvatures and torsions of the curve couple \((M_2, M_1)\) be \(\kappa, \tau, \kappa^*, \tau^* \) (\(\kappa \neq \tau, \kappa \neq 0\)). If \(M_1\) is a cylindrical helix, then \(M_2\) is a plane curve.

Proof: If \(M_1\) is a cylindrical helix, then we can write

\[\frac{\kappa}{\tau} = \text{constant}, \]

\[\left(\frac{\kappa}{\tau} \right)' = 0 \]

and we easily obtain

\[\kappa'\tau - \kappa\tau' = 0. \quad (36) \]

On the other hand from the equation (18), we can write

\[\frac{\tau^*}{\kappa^*} = \frac{\kappa\tau' - \kappa'\tau}{(c-s)\kappa(c^2 - \tau^2)}, \]

\[\sqrt{\left[\frac{(c-s)^2}{\kappa^2}\right]} \]

substituting by the equation (36) into the last equation, we get

\[\tau^* = 0. \]

Example 2.1: Let \(\alpha_1(\theta) = (\sqrt{2} \sinh \theta, \sqrt{2} \cosh \theta, \theta)\) be a unit speed time-like curve. If \(\alpha_1\) is a time-like curve then the involute curve is a space-like. In this situation, involute curve \(\beta_1\) of the curve \(\alpha_1\) can be given below.

\[\beta_1(\theta) = (\sqrt{2} \sinh \theta + (c-\theta)\sqrt{2} \cosh \theta, \sqrt{2} \cosh \theta + (c-\theta)\sqrt{2} \sinh \theta, c) \quad c \in IR, \]

for specially \(c=2\) and \(0 \leq \theta \leq \pi\). We can draw involute-evolute curve couple \((\beta_1, \alpha_1)\) with helping the programme of Mapple 11 as follow.
Example 2.2: The involute of the unit speed space-like curve
\[
\alpha_2(\theta) = \left(\frac{\sqrt{3}}{2} \cosh \theta, \frac{\sqrt{3}}{2} \sinh \theta, \frac{\theta}{2} \right)
\]
is a space-like or time-like. The involute of the curve \(\alpha_2 \) can be given below.

\[
\beta_2(\theta) = \left(\frac{\sqrt{3}}{2} \left[\cosh \theta + (c - \theta) \sinh \theta \right], \frac{\sqrt{3}}{2} \left[\sinh \theta + (c - \theta) \cosh \theta \right], \frac{c}{2} \right), \quad c \in \mathbb{R}.
\]

\(\beta_2 \) is a space-like curve. For specially \(c=2 \) and \(\theta \in [0, \pi] \), once again we can draw involute-evolute curve couple \((\beta_2, \alpha_2) \) with helping the programme of Mapple 11 as follow
REFERENCES

Received: December, 2008