(n, g(x))-Clean Rings

Ali H. Handam

Department of Mathematics, Al al-Bayt University
P.O.Box: 130095, Al Mafraq, Jordan
ali.handam@aabu.edu.jo

Abstract

A ring R is called n-clean ring if every element of R can be written as a sum of an idempotent and n units in R. Let $C(R)$ be the center of a ring R and $g(x)$ be a fixed polynomial in $C(R)[x]$. An element is called $g(x)$-clean if $r = u + s$ where u is a unit of R and $g(s) = 0$ and R is $g(x)$-clean if every element is $g(x)$-clean. An element $x \in R$ is called $(n, g(x))$-clean if $x = u_1 + u_2 + \cdots + u_n + s$, where $g(s) = 0$ and $u_1, u_2, ..., u_n$ are units in R and R is called $(n, g(x))$-clean ring if every element is $(n, g(x))$-clean. The class of clean rings, n-clean ring, and $g(x)$-clean rings is a proper subset of the class of $(n, g(x))$-clean rings. In this paper, we investigate some properties of $(n, g(x))$-clean rings.

Mathematics Subject Classification: 16U60, 16U99

Keywords: Clean rings; n-clean ring; $g(x)$-clean ring; $(n, g(x))$-clean ring

1 INTRODUCTION

Throughout this paper, R denotes an associative ring with unity, $U(R)$ its group of units, $\sqrt{0}$ its nilradical, $Id(R)$ its set of idempotents, and $J(R)$ its Jacobson radical.

A ring R is called clean if every element of R can be written as a sum of a unit and an idempotent. This definition was introduced by Nicholson [5]. According to Xiao and Tong [7], an element x of a ring R is called n-clean if $x = u_1 + u_2 + \cdots + u_n + e$ where $e \in Id(R)$, $u_i \in U(R)$, and n is a positive integer. The ring R is called n-clean if every element of R is n-clean for some fixed positive integer n.

Let $C(R)$ be the center of a ring R and $g(x)$ be a fixed polynomial in $C(R)[x]$. Camillo and Simón [1] defined R to be $g(x)$-clean ring if each $x \in R$ has the form $x = a + s$ where a is a unit of R and $g(s) = 0$.

Nicholson and Zhou [4] showed that $\text{End}(R M)$ is $g(x)$-clean where $R M$ is a semisimple left R-module and $g(x) \in (x - a)(x - b)C(R)[x]$ with $a, b \in C(R)$ and $b, b - a \in U(R)$. Also Fan and Yang [2] investigated $g(x)$-clean rings and obtained several important results. In this paper, we will extend the definition of $g(x)$-clean ring to obtain a larger class of rings, $(n, g(x))$-clean rings.

2 $(n, g(x))$-CLEAN RINGS

Let $C(R)$ be the center of a ring R and $g(x)$ be a fixed polynomial in $C(R)[x]$. An element $r \in R$ is called $g(x)$-clean [1], if $r = s + u$ where $g(s) = 0$ and u is a unit of R and R is $g(x)$-clean if every element of R is $g(x)$-clean.

Definition 2.1. Let n be a positive integer and let $g(x)$ be a fixed polynomial in $C(R)[x]$. An element $\alpha \in R$ is called $(n, g(x))$-clean if $\alpha = u_1 + u_2 + \cdots + u_n + s$, where $g(s) = 0$ and $u_1, u_2, ..., u_n$ are units in R. A ring is called an $(n, g(x))$-clean ring if every element in R is $(n, g(x))$-clean.

Clearly, clean rings are $(1, x^2 - x)$-clean rings, n-clean rings are $(n, x^2 - x)$-clean rings, $g(x)$-clean rings are $(1, g(x))$-clean rings.

Example 2.2. Let R be the ring of all 3×3 upper triangular matrices over \mathbb{Z}_2. Since

\[
\begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} + \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} + \begin{pmatrix} 0 & 1 & 1 \\ 0 & 0 & 1 \\ 0 & 0 & 1 \end{pmatrix},
\]

where \(\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}, \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \) are units in R, and

\[
\begin{pmatrix} 0 & 1 & 1 \\ 0 & 0 & 1 \\ 0 & 0 & 1 \end{pmatrix}^2 + \begin{pmatrix} 0 & 1 & 1 \\ 0 & 0 & 1 \\ 0 & 0 & 1 \end{pmatrix}^3 = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} + \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 1 \end{pmatrix} \text{ is } (2, x^2 + x^3)-\text{clean.}
\]

Example 2.3. Let G be a cyclic group of order 3, then the group ring $\mathbb{Z}_7[G]$ is 2-clean ring by Xiao and Tong [6] but $\mathbb{Z}_7[G]$ is not clean by Han and Nicholson [3]. So $\mathbb{Z}_7[G]$ is $(2, x^2 - x)$-clean ring which is not $(1, x^2 - x)$-clean ring. Thus, we obtain an example which is $(2, x^2 - x)$-clean ring but not $(x^2 - x)$-clean ring.

Proposition 2.4. Let $g(x)$ be a fixed polynomial in $C(R)[x]$. The following two conditions are equivalent:
(1) Every element \(\alpha \in R \) has the form \(\alpha = u_1 + u_2 + \cdots + u_n + s \), where \(g(s) = 0 \) and \(u_1, u_2, \ldots, u_n \) are units in \(R \).

(2) Every element \(\alpha \in R \) has the form \(\alpha = u_1 + u_2 + \cdots + u_n - s \), where \(g(s) = 0 \) and \(u_1, u_2, \ldots, u_n \) are units in \(R \).

Proof. (1) \(\Rightarrow \) (2) Let \(\alpha \in R \). Write \(-\alpha = v_1 + v_2 + \cdots + v_n + s \), where \(g(s) = 0 \) and \(v_1, v_2, \ldots, v_n \) are units in \(R \). Then \(\alpha = (v_1 - v_2) + \cdots + (v_n - s) \) where \(-(v_i) \in U(R) \) \(1 \leq i \leq n \), \(g(s) = 0 \).

(2) \(\Rightarrow \) (1) Let \(\alpha \in R \). Write \(-\alpha = v_1 + v_2 + \cdots + v_n - s \), where \(g(s) = 0 \) and \(v_1, v_2, \ldots, v_n \) are units in \(R \). Then \(\alpha = (v_1 - v_2) + \cdots + (v_n + s) \) where \(-(v_i) \in U(R) \) \(1 \leq i \leq n \), \(g(s) = 0 \).

Recall that an element \(x \in R \) is called periodic if there exist integers \(n, m \) with \(n > m \geq 1 \) such that \(x^n = x^m \). Ye [8], an element \(r \) of a ring \(R \) is called semiclean if \(r = a + u \), where \(a \) is periodic and \(u \) is a unit in \(R \).

If an element \(r \in R \) is semiclean, then \(r = a + u \), where \(u \) is a unit and \(a^k = a^l \), for some positive integers \(k, l \) \(k > l \geq 1 \). So, \(r \) is an \((1, x^k - x^l)\)-clean.

Lemma 2.5. (Ye [8]): Every periodic element in a ring \(R \) is clean.

Proposition 2.6. Let \(n, m \) be two positive integers, \(m > 1 \). If the ring \(R \) is \((n, x^m - x)\)-clean ring, then \(R \) is \((n+1)\)-clean ring.

Proof. Let \(r \in R \) then \(r = u_1 + u_2 + \cdots + u_n + s \), and \(g(s) = s^m - s = 0 \). Since \(s \) is a periodic element in \(R \), \(s \) is clean. So \(s = v + e \), where \(v \in U(R) \) and \(e \in Id(R) \). Hence \(r = u_1 + u_2 + \cdots + u_n + v + e \), where \(u_1, u_2, \ldots, u_n, v \in U(R) \), \(e \in Id(R) \). Thus \(R \) is \((n+1)\)-clean ring.

For each positive integer \(n \), let \(U_n(R) \) denote the set of elements of \(R \) that can be written as a sum of no more than \(n \) units of \(R \).

Proposition 2.7. Let \(n, m \) be two positive integers. If \(R \) is an \((n, a_m x^m + a_{m-1} x^{m-1} + \cdots + a_1 x + a_0)\)-clean ring, \(a_0 \in U(R) \) then \(R = U_{n+1}(R) \).

Proof. Let \(\alpha \in R \). Then \(\alpha = u_1 + u_2 + \cdots + u_n + s \), where \(a_m s^m + a_{m-1} s^{m-1} + \cdots + a_1 s = 0 \) and \(u_1, u_2, \ldots, u_n \) are units in \(R \). So \((a_m s^{m-1} + a_{m-1} s^{m-2} + \cdots + a_1) s = -a_0 \in U(R) \). Therefore \(s \in U(R) \). Hence \(R = U_{n+1}(R) \).

Proposition 2.8. Let \(f : R \rightarrow S \) be a ring epimorphism. If \(R \) is an \((n, g(x))\)-clean ring, then \(S \) is an \((n, h(g(x)))\)-clean ring, where \(h \) is a map from \(C(R)[x] \) to \(C(S)[x] \) such that \(h(\sum a_i x^i) = \sum f(a_i) x^i \).
Proof. Let \(g(x) = \sum_{i=0}^{m} a_i x^i \in C(R) [x] \), then \(h(g(x)) = h(\sum_{i=0}^{m} a_i x^i) = \sum_{i=0}^{m} f(a_i)x^i \in C(S) [x] \). For each \(s \in S \) there exists \(r \in R \) such that \(f(r) = s \). Since \(R \) is an \((n, g(x))\)-clean ring, \(r = d + u_1 + u_2 + \cdots + u_n \), where \(g(d) = 0 \) and \(u_1, u_2, \ldots, u_n \) are units in \(R \). So \(0 = f(g(d)) = f(a_0) + f(a_1)f(d) + \cdots + f(a_m)(f(d))^m = h(g(f(d))) \). Now \(s = f(r) = f(d) + f(u_1) + \cdots + f(u_n) \), where \(f(u_i) \in U(S) \quad (1 \leq i \leq n) \) and \(h(g(f(d))) = 0 \). Hence \(S \) is an \((n, h(g(x)))\)-clean ring.

Let \(R[[x]] \) be the ring of all formal power series over a ring \(R \). Fan and Yang [2] have shown that the ring \(R[[x]] \) is \((n, g(x))\)-clean ring if and only if \(R \) is \((g(x))\)-clean. We extend this result to \((n, g(x))\)-clean ring.

Proposition 2.9. Let \(n \) be a positive integer. The ring \(R[[x]] \) is \((n, g(x))\)-clean ring if and only if \(R \) is \((n, g(x))\)-clean ring.

Proof. Suppose that \(R[[x]] \) is an \((n, g(x))\)-clean ring. By proposition 2.8, \(R \cong R[[x]]/(x) \) is an \((n, g(x))\)-clean ring. Conversely, suppose \(R \) is an \((n, g(x))\)-clean ring. Let \(f = \sum_{i=0}^{\infty} a_i x^i \in R[[x]] \). Write \(a_0 = u_1 + u_2 + \cdots + u_n + s \), where \(g(s) = 0 \) and \(u_1, u_2, \ldots, u_n \) are units in \(R \). Then \(f = s + (u_1 + \sum_{i=1}^{\infty} a_i x^i) + u_2 + \cdots + u_n \), where \((u_1 + \sum_{i=1}^{\infty} a_i x^i) \in U(R[[x]]), \quad u_i \in U(R) \subseteq U(R[[x]]) \quad (2 \leq i \leq n) \), \(g(s) = 0 \). Thus \(R[[x]] \) is \((n, g(x))\)-clean ring.

Proposition 2.10. If \(R \) is any commutative ring with unity, then the polynomial ring \(R[x] \) is not \((n, g(x))\)-clean ring.

Proof. Since \(R \) is a commutative ring with unity, \(U(R[x]) = \{a_0 + a_1 x + \cdots + a_k x^k \mid a_0 \in U(R), a_1, \ldots, a_k \in \sqrt{0}\} \). If \(x \) is \((n, g(x))\)-clean, we may let \(x = (u_1 + a_{11} x + \cdots + a_{1k} x^k) + (u_2 + a_{21} x + \cdots + a_{2k} x^k) + \cdots + (u_n + a_{n1} x + \cdots + a_{nk} x^k) + s \), where \(g(s) = 0, \) \(u_1, u_2, \ldots, u_n \) are units in \(R \) and \(a_{ij} \in \sqrt{0} \subseteq J(R) \quad (1 \leq i \leq n, 1 \leq j \leq k_i) \). Then \(1 = \sum_{i=1}^{n} a_{i1} \in J(R) \), which is a contradiction. Thus \(R[x] \) is not \((n, g(x))\)-clean ring.

Proposition 2.11. A direct product \(R = \Pi R_\alpha \) of rings \(\{R_\alpha\} \) is an \((n, g(x))\)-clean ring if and only if each \(R_\alpha \) is an \((n, g(x))\)-clean ring.

Proof. \((\Rightarrow)\) This follows from Proposition 2.8.

\((\Leftarrow)\) Suppose each \(R_\alpha \) is an \((n, g(x))\)-clean ring. Let \(x = (x_\alpha) \in \Pi R_\alpha \). For each \(\alpha, \) \(x_\alpha = u_1^\alpha + u_2^\alpha + \cdots + u_n^\alpha + s_\alpha \), where \(u_1^\alpha, u_2^\alpha, \ldots, u_n^\alpha \) are units in \(R_\alpha \)
and \(g(s_\alpha) = 0 \). Then \(x = u^1 + u^2 + \cdots + u^n + s \), where \(u^i = (u^i)_\alpha \in U(\Pi R_\alpha) \) (\(1 \leq i \leq n \)) and \(g(s) = g((s_\alpha)) = 0 \). Hence \(R = \Pi R_\alpha \) is an \((n, g(x))\)-clean ring.

References

Received: October, 2008