Hyper Y-Domination in Bipartite Graphs

V. Swaminathan

Research Coordinator
Ramanujan Research Centre
S.N.College, Madurai, India.

Y. B. Venkatakrishnan

Department of Mathematics
SASTRA University, Tanjore, India
venkatakris2@maths.sastra.edu

Abstract

In this paper, we define hyper Y-dominating set in bipartite graph and give the bipartite theory of vertex-edge dominating set and edge-vertex dominating set.

Mathematics Subject Classification: 05C69

Keywords: Bipartite graph, Hyper Y-dominating set, edge-vertex and vertex-edge dominating sets

1. INTRODUCTION

All graphs considered here are undirected. All the notations not defined in this paper can be found in [1]. The bipartite theory of graphs were introduced in [4,5] and a parameter called X-domination number of a bipartite graph was defined. Let $G = (X, Y, E)$ be a bipartite graph with $|X| = p$ and $|Y| = q$. Two vertices u and v in X are X-adjacent if they have a common adjacent vertex $y \in Y$. Let $u \in X$ and $\Delta_r = \max \{|N_r(u)|/ u \in X\}$ where the X-neighbor set $N_r(u)$ is defined as $N_r(u) = \{v \in X/ u \text{ and } v \text{ are X-adjacent}\}$.

A subset $D \subseteq X$ is an X-dominating set if every $x \in X$ is X-adjacent to some vertex in D. The minimum cardinality of a X-dominating set is called X-domination number and is denoted by $\gamma_X(G)$.
We say a vertex \(x \in X \) hyper Y-dominates \(y \in Y \) if \(y \in N(x) \) or \(y \in N(N_Y(x)) \). A subset \(S \subseteq X \) is a hyper Y-dominating set if every \(y \in Y \) is hyper Y-dominated by a vertex of \(S \). The minimum cardinality of a hyper Y-dominating set is called hyper Y-domination number and is denoted by \(\gamma_{hY}(G) \).

2. BOUNDS ON \(\gamma_{hY}(G) \).

Theorem 2.1: In a bipartite graph, every X-dominating set is a hyper Y-dominating set, but not conversely.

Proof: Let \(D \subseteq X \) be a X-dominating set. \(\forall x \in X - S, \exists u \in D \) such that \(u \) and \(x \) are adjacent. Every \(y \in Y \) is adjacent to a element of \(D \) or adjacent to a vertex X-adjacent to a vertex of \(D \). Hence, \(D \) is a hyper Y-dominating set. \(\square \)

Conversely, consider the graph

\[
\begin{array}{c}
 a \quad b \quad c \quad d \\
 1 \quad 2 \quad 3 \\
\end{array}
\]

\(S = \{b\} \) is hyper Y-dominating set but not X-dominating set. \(\square \)

Corollary 2.1.1: In a bipartite graph \(G \), \(\gamma_{hY} \leq \gamma_X \).

Theorem 2.2: In a bipartite graph \(G \), \(\gamma_{hY} \geq \frac{|Y|}{\Delta \Delta_Y} \).

Proof: A vertex \(x \in X \) can hyper Y-dominate at most \(\Delta_Y \Delta \) vertices. Hence, \(\gamma_{hY} \geq \frac{|Y|}{\Delta \Delta_Y} \). \(\square \)

Corollary 2.2.1: In a bipartite graph \(G \), if every vertex in \(X \) is of degree 2 then \(\gamma_{hY} \geq \frac{|Y|}{2(\Delta - 1)\Delta} \).

Proof: If every vertex in \(X \) is of degree 2 then a vertex in \(X \) can have at most \(2(\Delta - 1) \) X-neighbors. Hence, \(\gamma_{hY} \geq \frac{|Y|}{2(\Delta - 1)\Delta} \). \(\square \)
Corollary 2.2.2: In a bipartite graph G, if every vertex in Y is of degree 2 then
$\gamma_{hY} \geq \frac{|Y|}{\Delta^2}$.

Proof: If every vertex in Y is of degree 2 then a vertex in X can have at most Δ X-neighbors. Hence, $\gamma_{hY} \geq \frac{|Y|}{\Delta^2}$. □

3. HYPER Y-INDEPENDENT SET:

A subset $S \subseteq X$ is called a hyper Y-independent set if every $y \in Y$ satisfies one of the conditions (i) $y \notin N(x) \forall x \in S$ or (ii) There exists a neighbor of y say $x \in S$ such that $N_y(x) \subset S$.

The maximum cardinality of a hyper Y-independent set is called hyper Y-independence number and is denoted by $\beta_{hY}(G)$.

[4,5] A subset $S \subseteq X$ is called a hyper independent set if $N(y) \subset S, \forall y \in Y$. The maximum cardinality of a hyper independent set is called hyper independence number and is denoted by $\beta_h(G)$.

Theorem 3.1: In a bipartite graph G, every hyper independent set is hyper Y-independent but not conversely.

Proof: Let S be a hyper independent set. $N(y) \subset S$ for every $y \in Y$. Equivalently $y \notin N(x)$ for every $x \in S$ or there exists a neighbor of y say $x \in S$ such that $N_y(x) \subset S$. Hence, S is hyper Y-independent set.

Converse need not be true. Consider the graph

$S = \{a\}$ is hyper Y-independent set but not hyper independent set. □

Corollary 3.1.1: In a bipartite graph G, $\beta_h \leq \beta_{hY}$.

4. GALLAI TYPE THEOREM:

Theorem 4.1: In a bipartite graph G, S is a hyper Y-dominating set if and only if $X - S$ is hyper Y-independent set.
Proof: S is a hyper Y-dominating set. Every $y \in Y$ is adjacent to a vertex of S or $y \in N(N_y(x))$ for some $x \in S$. Equivalently, $y \notin N(u)$ where $u \in X - S$ or $\exists u \in X - S$ adjacent to y such that $N_y(u) \subseteq (X - S)$. Therefore, $X - S$ is hyper Y-independent set.

Conversely, D is a hyper Y-independent set. For every $y \in Y$ one of the condition is satisfied (i) $y \notin N(x) \forall x \in D$ or (ii) There exists a neighbor of y say $x \in D$ such that $N_y(x) \subseteq D$. Equivalently, $y \notin N(u)$ for some $u \in X - D$ or there exists $u \in X - D$ such that $N(N_y(u))$ contains y. $X - D$ is hyper Y-dominating set. \square

Corollary 4.1.1: In a bipartite graph G, $\gamma_{hv}(G) + \beta_{hv}(G) = |X|$.

5. BIPARTITE THEORY OF GRAPHS

[4,5] suggests that given any problem, say P, on an arbitrary graph G, there is very likely a corresponding problem Q on a bipartite graph G^1, such that a solution for Q provides a solution for P.

Various bipartite graphs can be constructed from an arbitrary graph G, some of them are defined as in [4,5]. The graph $VE(G) = (V,E,F)$ is defined by the edges $F=\{(u,e)/e=(u,v) \in E\}$. Let V^1 be a copy of the vertices V of G. The graph $VV(G) = (V,V^1,E^1)$ is defined by the edges $E^1=\{(u,v^1)/(u,v) \in E\}$ and the graph $VV^+ = (V, V^1,E^+)$ contains the edges E^1 of the graph VV together with the edges $\{(u,u^1)/u \in V\}$.

[3] Given an arbitrary graph $G=(V,E)$, a vertex $u \in V(G)$ ve-dominates an edge $vw \in E(G)$ if (i) $u = v$ or $u = w$ (u incident to vw) or (ii) uv or uw is an edge in G. A set $S \subseteq V(G)$ is a vertex-edge dominating set if for all edges $e \in E(G)$, there exists a vertex $v \in S$ such that v dominates e. The minimum cardinality of a ve-dominating set of G is called the vertex-edge domination number and is denoted as $\gamma_{ve}(G)$.

[3] An edge $e = uv \in E(G)$ ev-dominates a vertex $w \in V(G)$ if (i) $u = w$ or $v = w$ (w is incident to e) or (ii) uw or vw is an edge in G. (w is adjacent to u or v). A set $S \subseteq E(G)$ is an edge-vertex dominating set if for all vertices $v \in V(G)$, there exists an edge $e \in S$ such that e dominates v. The minimum cardinality of a ev-dominating set of G is called the edge-vertex domination number and is denoted as $\gamma_{ev}(G)$.

We give the bipartite equivalent of vertex-edge and edge-vertex dominating sets.

Theorem 5.1: For any graph G, $\gamma_{hv}(VE(G)) = \gamma_{ve}(G)$.

Proof: Let D be a γ_{ve} set of graph G. Every edge in G is incident with a vertex in D or adjacent to a edge incident with a vertex in D. In $VE(G)$, every vertex
in \(Y \) is adjacent to a vertex of \(D \) or adjacent to a vertex \(X \)-adjacent to a vertex of \(D \). \(D \) is a hyper \(Y \)-dominating set in \(\text{VE}(G) \). Therefore,
\[
\gamma_{HY}(\text{VE}(G)) \leq |S| = \gamma_{ve}(G).
\]
Conversely, let \(S \) be a \(\gamma_{HY}(\text{VE}(G)) \) set. Every vertex \(y \in Y \) is incident with a vertex in \(S \) or incident with a vertex \(X \)-adjacent to a vertex in \(S \). In graph \(G \), every edge is incident with a vertex in \(S \) or incident with a vertex adjacent to a vertex of \(S \). \(S \) is a vertex edge dominating set. Therefore,
\[
\gamma_{ve} \leq |S| = \gamma_{HY}(\text{VE}(G)).
\]
Hence, \(\gamma_{HY}(\text{VE}(G)) = \gamma_{ve}(G) \). \(\square \)

Theorem 5.2: For any graph \(G \), \(\gamma_{HY}(\text{EV}(G)) = \gamma_{ve}(G) \).

Proof: Let \(D \) be a \(\gamma_{ve}(G) \) set of graph \(G \). Every vertex in \(G \) is incident with an edge in \(D \) or incident with an edge adjacent to an edge in \(D \). In \(\text{EV}(G) \), every vertex in \(Y \) is adjacent to a vertex in \(D \) or adjacent to a vertex which is \(X \)-adjacent to a vertex in \(D \). Therefore \(D \) is hyper \(Y \)-dominating set of \(\text{EV}(G) \).
\[
\gamma_{HY}(\text{EV}(G)) \leq |D| = \gamma_{ve}(G).
\]
Conversely, let \(S \) be a \(\gamma_{HY}(\text{EV}(G)) \) set of \(\text{EV}(G) \). Every vertex in \(Y \) is adjacent to a vertex in \(S \) or adjacent to a vertex \(X \)-adjacent to a vertex of \(S \). In \(G \), every vertex in \(G \) is incident with an edge in \(S \) or incident with an edge adjacent to a vertex in \(S \). Therefore, \(S \) is an edge vertex dominating set. Hence, \(\gamma_{ev}(G) \leq |S| = \gamma_{HY}(\text{EV}(G)). \) Therefore, \(\gamma_{HY}(\text{EV}(G)) = \gamma_{ev}(G) \). \(\square \)

We construct a new graph \(G_{13} \) from a given graph \(G \) as follows, \(G_{13} \) has the same vertex set as \(G \) and two vertices in \(G_{13} \) are adjacent iff they are at a distance one or three in \(G \).

Theorem 5.3: For any graph \(G \), \(\gamma_{HY}(\text{VV}(G)) = \gamma_{t}(G_{13}) \).

Proof: Let \(S \) be a \(\gamma_{t}(G_{13}) \) set of graph \(G_{13} \). For every \(v \in V \) there exists \(u \in S \) such that \(u \) and \(v \) are adjacent. In \(G \), \(d(u,v) = 1 \) or \(3 \). In graph \(\text{VV} \), \(u \in S \) hyper \(Y \)-dominates \(v \). Therefore, \(S \) is a hyper \(Y \)-dominating set.
\[
\gamma_{HY}(\text{VV}(G)) \leq |S| = \gamma_{t}(G_{13}) \).
\]
Conversely, \(D \) is a \(\gamma_{HY}(\text{VV}(G)) \) set. Every \(v \in Y \) is hyper \(Y \)-dominated by a vertex in \(D \). In graph \(G \), \(d(u,v) = 1 \) or \(3 \). Therefore, \(u \) and \(v \) are adjacent in \(G_{13} \). Hence, \(D \) is a total dominating set in \(G_{13} \).
\[
\gamma_{t}(G_{13}) \leq |D| = \gamma_{HY}(\text{VV})
\]
Therefore, \(\gamma_{HY}(\text{VV}(G)) = \gamma_{t}(G_{13}) \). \(\square \)

Theorem 5.4: For any graph \(G \), \(\gamma_{HY}(\text{VV}^*) = \gamma_{s3}(G) \).
Proof: Let S by a $\gamma_{hY}(VV^+)$ set. Every vertex in Y is adjacent to a vertex of S or adjacent to a vertex X-adjacent to a vertex of S. In graph G, $d(v, S) \leq 3$ for every vertex $v \in V - S$. Hence, S is a distance-3 dominating set.

$\gamma_{\leq 3}(G) \leq |S| = \gamma_{hY}(VV^+)$. Conversely, D is a $\gamma_{\leq 3}(G)$ set. For every $u \in V - S$ there exists a vertex $v \in S$ such that $d(u, v) \leq 3$. In graph $VV^+(G)$, every vertex in Y is adjacent to a vertex of D or adjacent to a vertex X-adjacent to a vertex of D. Therefore, D is a hyper Y-dominating set. Hence, $\gamma_{hY}(VV^+) \leq |D| = \gamma_{\leq 3}(G)$. Therefore, $\gamma_{hY}(VV^+) = \gamma_{\leq 3}(G)$. □

Corollary 2.2.1 and 2.2.2 gives the following

Theorem 5.5: For any graph G, $\gamma_{we} \geq \frac{|E|}{\Delta^2}$ and $\gamma_{ev} \geq \frac{|V|}{2\Delta(\Delta - 1)}$.

REFERENCES

Received: October, 2008