Abstract

In this paper, we generalise Peiffer elements for groups given in [9] to higher dimensions of pro-C group case giving systematic ways of generating them.

Mathematics Subject Classification: 18G50, 18G30, 55P10

Keywords: Profinite Groups, Simplicial Groups, Peiffer elements

1 Introduction

The theory of profinite and in particularly pro-p groups has several times provided significant results for the theory of presentations of finite groups. The most remarkable example of this is, of course, the Golod-Šafarevič Theorem (c.f. [10]).

Profinite and pro-C simplicial groups occupy a place somewhere between homological group theory, homotopy theory, algebraic K-theory and algebraic geometry.

R. Brown and J.-L. Loday [2], noted that if the second dimension G_2 of a simplicial group, G, is generated by degenerate elements, that is, elements coming from lower dimensions, then the image of the second term, $\partial_2 NG_2$, of the Moore complex, (NG, ∂), of G by the differential ∂ is

$$[\text{Ker}d_1, \text{Ker}d_0]$$

where the square brackets as usual denote the commutator subgroup.

In this paper, we generalise Peiffer elements for commutative algebra given in [1] and for groups given in [9] to higher dimensions of pro-C group case giving
systematic ways of generating them. The methods we use are based on ideas of Conduche, [5] and techniques developed by Carrasco and Cegarra [4].

Terminology

In this paper \(\mathcal{C} \) will denote a class of finite groups which is closed under the formation of subgroups, homomorphic images, finite products and which contains at least one non-trivial group.

2 Definitions and notation

A pro-\(\mathcal{C} \) simplicial group \(P \) consists of pro-\(\mathcal{C} \) groups \(\{ P_n \} \) together with continuous face and degeneracy maps \(d_i = d^n_i : P_n \to P_{n-1}, 0 \leq i \leq n, (n \neq 0) \) and \(s_i = s^n_i : P_n \to P_{n+1}, 0 \leq i \leq n \), satisfying the usual simplicial identities given in [6] and also [7], [8].

For the ordered set \([n] = \{0 < 1 < \ldots < n\} \), let \(\alpha^n_i : [n+1] \to [n] \) be the increasing surjective map given by

\[
\alpha^n_i(j) = \begin{cases}
 j & \text{if } j \leq i, \\
 j-1 & \text{if } j > i.
\end{cases}
\]

Let \(S(n, n-l) \) be the set of all monotone increasing surjective maps from \([n] \) to \([n-1] \). This can be generated from the various \(\alpha^n_i \) by composition. The composition of these generating maps satisfies the rule \(\alpha_j \alpha_i = \alpha_{i-1} \alpha_j \) with \(j < i \). This implies that every element \(\alpha \in S(n, n-l) \) has a unique expression as \(\alpha = \alpha_{i_1} \alpha_{i_2} \ldots \alpha_{i_l} \) with \(0 \leq i_1 < i_2 < \ldots < i_l \leq n \), where the indices \(i_k \) are the elements of \([n] \) at which \(\alpha(i) = \alpha(i+1) \). We thus can identify \(S(n, n-l) \) with the set \(\{(i_1, \ldots, i_l) : 0 \leq i_1 < \ldots < i_l \leq n-1 \} \). In particular the single element of \(S(n, n) \), defined by the identity map on \([n] \), corresponds to the empty 0-tuple (\(() \)) denoted by \(\emptyset \). Similarly the only element of \(S(n, 0) \) is \((n-1, n-2, \ldots, 0) \). For all \(n \geq 0 \), let

\[
S(n) = \bigcup_{0 \leq l \leq n} S(n, n-l).
\]

We say that \(\alpha = (i_l, \ldots, i_1) < \beta = (j_m, \ldots, j_1) \) in \(S(n) \)

if \(i_1 = j_1, \ldots, i_k = j_k \) but \(i_{k+1} > j_{k+1} \) \((k > 0) \)

or

if \(i_1 = j_1, \ldots, i_l = j_l \) and \(l < m \).

This makes \(S(n) \) an ordered set. For instance, the orders of \(S(2), S(3) \) and \(S(4) \) are respectively:

\[
S(2) = \{\emptyset < (1) < (0) < (1,0)\},
\]
Peiffer pairings in the Moore complex

\[S(3) = \{ \emptyset < (2) < (1) < (2, 1) < (0) < (2, 0) < (1, 0) < (2, 1, 0) \}, \]
\[S(4) = \{ \emptyset < (3) < (2) < (3, 2) < (1) < (3, 1) < (2, 1) < (3, 2, 1) < (0) < (3, 0) < (2, 0) < (3, 2, 0) < (1, 0) < (3, 1, 0) < (2, 1, 0) < (3, 2, 1, 0) \}. \]

If \(\alpha, \beta \in S(n) \) we define \(\alpha \cap \beta \) to be the set of indices which belong to both \(\alpha \) and \(\beta \).

The Moore complex \(\mathbf{NP} \) of a pro-\(\mathcal{C} \) simplicial group \(\mathbf{P} \) is defined to be the normal chain complex \((\mathbf{NP}, \partial)\) with

\[\mathbf{NP}_n = \bigcap_{i=0}^{n-1} \text{Ker} d_i \]

and with continuous differential \(\partial_n : \mathbf{NP}_n \to \mathbf{NP}_{n-1} \) induced from \(d_n \) by restriction. Its homology gives the homotopy groups of the pro-\(\mathcal{C} \) simplicial group.

3 The semidirect decomposition of a pro-\(\mathcal{C} \) simplicial group

The fundamental idea behind this can be found in Conduche [5]. A detailed investigation of this for the case of simplicial groups is given in Carrasco and Cegarra [4].

Lemma 3.1. Let \(\mathbf{P} \) is a pro-\(\mathcal{C} \) simplicial group. Then \(P_n \) can be decomposed as a semidirect product:

\[P_n \cong \text{Ker} d_0^n \rtimes s_0^{n-1}(P_{n-1}). \]

Proof. The isomorphism can be defined as follows:

\[\theta : P_n \longrightarrow \text{Ker} d_0^n \rtimes s_0^{n-1}(P_{n-1}) \]
\[p \longmapsto (ps_0d_0p^{-1}, s_0d_0p). \]

\(\square \)

Since we have the isomorphism \(P_n \cong \text{Ker} d_0^n \rtimes s_0^{n-1}(P_{n-1}) \), we can repeat this process as often as necessary to get each of the \(P_n \) as a multiple semidirect product of degeneracies of terms in the Moore complex. Let \(\mathbf{K} \) be the simplicial group defined by

\[K_n = \text{Ker} d_0^{n+1}, d_i^m = d_i^{m+1} |_{\text{Ker} d_0^{n+1}} \text{ and } s_i^p = s_i^{n+1} |_{\text{Ker} d_0^{n+1}}. \]
Applying Lemma 1 to P_{n-1} and to K_{n-1}, gives

$$P_n \cong \ker d_0 \rtimes s_0 P_{n-1} = \ker d_0 \rtimes s_0(\ker d_0 \rtimes s_0 P_{n-2}) = K_{n-1} \rtimes (s_0 \ker d_0 \rtimes s_0 s_0 P_{n-2}).$$

Since K is a simplicial group, we have the following

$$\ker d_0^n = K_{n-1} \cong \ker d_0^k \rtimes s_0^k K_{n-2} = (\ker d_1 \cap \ker d_0) \rtimes s_1 \ker d_0$$

and this enables us to write

$$P_n = ((\ker d_1^n \cap \ker d_0^n) \rtimes s_1(\ker d_0^{n-1})) \rtimes (s_0(\ker d_0^{n-1}) \rtimes s_0 s_0(P_{n-2})).$$

Thus we can decompose P_n as follows:

Proposition 3.2. If P is a pro-C simplicial group, then for any $n \geq 0$

$$P_n \cong (NP_n \rtimes s_{n-1}^n NP_{n-1}) \rtimes \ldots \rtimes s_i^n \{((NP_{n-1} \rtimes s_{n-2}^i NP_{n-2}) \rtimes \ldots \rtimes s_j^{n-2}(NP_{n-2} \rtimes s_{n-3}^j NP_{n-3}) \rtimes \ldots \rtimes s_j^{n-1}(NP_{n-1} \times s_j^1 NP_j))\}.$$

The bracketing and the order of terms in this multiple semidirect product are generated by the sequence:

$$P_1 \cong NP_1 \rtimes s_0^0 NP_0,$$

$$P_2 \cong (NP_2 \rtimes s_0^1 NP_1) \rtimes (s_1^1 NP_2 \rtimes s_0^1 s_0^0 NP_0),$$

$$P_3 \cong ((NP_3 \rtimes s_0^2 NP_2) \rtimes (s_2^2 NP_3 \rtimes s_0^2 s_0^1 NP_1) \rtimes (s_0^2 s_1^1 NP_1) \rtimes (s_1^2 s_0^1 NP_1 \rtimes s_0^2 s_0^1 s_0^0 NP_0))$$

and

$$P_4 \cong (((NP_4 \rtimes s_0^3 NP_3) \rtimes (s_3^3 NP_4 \rtimes s_0^3 s_0^2 NP_2)) \rtimes (s_0^3 s_0^2 s_0^1 NP_1) \rtimes (s_1^3 s_0^2 s_0^1 s_0^1 NP_1)) \rtimes (((s_3^3 s_3^2 s_2^2 NP_2) \rtimes (s_1^3 s_0^2 NP_2 \rtimes s_0^3 s_0^2 NP_1)) \rtimes (s_0^3 s_0^2 s_0^1 s_0^0 NP_0)).$$

and correspond to the order in $S(n)$ where the term corresponding to $\alpha = (i_l, \ldots, i_1) \in S(n)$ is $s_\alpha(NP_{n-\#\alpha}) = s_{i_l \ldots i_1}(NP_{n-\#\alpha}) = s_{i_l} \ldots s_{i_1}(NP_{n-\#\alpha})$, where $\#\alpha = l$. Hence any element $x \in P_n$ can be written in the form

$$x = y \prod_{\alpha \in S(n)} s_\alpha(x_\alpha) \text{ with } y \in NP_n \text{ and } x_\alpha \in NP_{n-\#\alpha}.$$

4 Higher order Peiffer elements

We will define closed normal subgroup N_n of P_n. Let $G(n)$ be a set consisting of pairs of elements (α, β) from $S(n)$ with $\alpha \cap \beta = \emptyset$, and $\alpha \prec \beta$, where
Peiffer pairings in the Moore complex 981

\[\alpha = (i_r, \ldots, i_1), \beta = (j_s, \ldots, j_1) \in S(n). \] We write \(\# \alpha = r \), i.e. the length of the string \(\alpha \). The linear continuous morphisms that we will need,

\[\{ F_{\alpha, \beta} : NP_{n-\# \alpha} \times NP_{n-\# \beta} \rightarrow NP_n : (\alpha, \beta) \in G(n), \ n \geq 0 \} \]

are given as composites \(F_{\alpha, \beta} = g_\mu(s_\alpha \times s_\beta) \) where

\[s_\alpha = s_{i_r} \ldots s_{i_1} : NP_{n-\# \alpha} \rightarrow P_n, \ s_\beta = s_{j_s} \ldots s_{j_1} : NP_{n-\# \beta} \rightarrow P_n, \]

\(p : P_n \rightarrow NP_n \) is defined by composite continuous projections \(g = g_{n-1} \ldots g_0 \), where \(g_j(z) = zs_jd_j(z)^{-1} \) with \(j = 0, 1, \ldots, n-1 \) and \(\mu : P_n \times P_n \rightarrow P_n \) is given by the commutator. Thus

\[F_{\alpha, \beta}(x_\alpha, y_\beta) = (1s_{n-1}d_{n-1}^{-1}) \ldots (1s_0d_0^{-1})[s_\alpha(x_\alpha), s_\beta(y_\beta)]. \]

We define the closed normal subgroup \(N_n \) to be that generated by elements of the form \(F_{\alpha, \beta}(x_\alpha, y_\beta) \) where \(x_\alpha \in NP_{n-\# \alpha} \) and \(y_\beta \in NP_{n-\# \beta} \).

The idea for the construction of \(N_n \) and the use of the structure maps came from examining the thesis of Carrasco [3], see also Carrasco and Cegarra, [4].

Let \(P \) be a pro-\(\mathcal{C} \) simplicial group with Moore complex \(NP \) and for \(n > 1 \), let \(D_n \) be the closed normal subgroup generated by the degenerate elements in dimension \(n \). If \(P_n = D_n \), then

\[\partial_n(NP_n) = \partial_n(N_n) \quad \text{for all } n > 1, \]

where \(N_n \) is a closed normal subgroup in \(P_n \) generated by a fairly small explicitly given set of elements, see below.

Theorem 4.1. If \(n = 2, 3 \) or \(4 \), then the image of the Moore complex of the pro-\(\mathcal{C} \) simplicial group \(P \) can be given in the form

\[\partial_n(NP_n) = \prod_{I,J} [K_I, K_J] \]

where the square brackets denote the closed commutator subgroup and \(\emptyset \neq I, J \subset [n-1] = \{0, 1, \ldots, n-1\} \) with \(I \cup J = [n-1] \), and where

\[K_I = \bigcap_{i \in I} \text{Ker} d_i \quad \text{and} \quad K_J = \bigcap_{j \in J} \text{Ker} d_j. \]

References

Received: August, 2008