On the Secant Varieties of the Osculating Varieties of Veronese Embeddings of P^n : An Asymptotic Result

E. Ballico¹

Dept. of Mathematics University of Trento 38050 Povo (TN), Italy ballico@science.unitn.it

Abstract. Fix Integers n > 0, k > 0. Here we prove the existence on an integer d(n,k) with the following property. Fix any integer $d \ge d(n,k)$. Let $O_{k,n,d} \subset \mathbf{P}^N, N := \binom{n+d}{n} - 1$, be the order k osculating variety of the order d Veronese embedding of \mathbf{P}^n . Then all the secant varieties of $O_{k,n,d}$ have the expected dimension.

Mathematics Subject Classification: 14N05

Keywords: osculating space, secant variety, Veronese variety; fat point, zero-dimensional scheme, postulation

1. INTRODUCTION

We work over an algebraically closed field \mathbb{K} with $\operatorname{char}(\mathbb{K}) = 0$. Fix integers n > 0 and d > k > 0. Let $V_{n,d} \subseteq \mathbf{P}^N$, $N := \binom{n+d}{n} - 1$, be the order d Veronese embedding of \mathbf{P}^n and $O_{k,n,d} \subseteq \mathbf{P}^N$ the order k osculating variety of $V_{n,d}$ in \mathbf{P}^N , i.e. the closure in \mathbf{P}^N of the union of the general k-osculating linear spaces of $V_{n,d}$. dim $(O_{k,n,d}) = \min\{N, \binom{n+k}{n} + n - 1\}$, i.e. $O_{k,n,d}$ has the expected dimension ([2], Lemma 3.3). For any integral m-dimensional projective subvariety $X \subseteq \mathbf{P}^N$ and any integer $s \ge 1$ let $S^{s-1}(X)$ denote the closure in \mathbf{P}^N of all (s-1)-dimensional linear subspaces of \mathbf{P}^N spanned by s points of X. $S^{s-1}(X)$ is an integral variety and dim $(S^{s-1}(X)) \le \min\{N, s(m+1)-1\}$. If dim $(S^{s-1}(X)) = \min\{N, s(m+1)-1\}$, then we will say that $S^{s-1}(X)$ has the expected dimension. X is said to be ordinary if all its secant varieties have the expected dimension. A. Bernardi, M. V. Catalisano, A.V. Geramita and A. Gimigliano studied in [2] the dimension of the secant varieties of $O_{k,n,d}$.

¹The author was partially supported by MUR and GNSAGA of INdAM (Italy).

To prove their results they introduced the following zero-dimensional schemes. Fix $P \in \mathbf{P}^n$ and a line $D \subseteq \mathbf{P}^n$ such that $P \in D$. For any integer m > 0 let mP denote the infinitesimal neighborhood of order m-1 of P in \mathbf{P}^n , i.e. the closed subscheme of \mathbf{P}^n with $(\mathcal{I}_P)^m$ has its ideal sheaf. Hence $(mP)_{red} = \{P\}$ and length(mP) = $\binom{n+m-1}{n}$. mP will be called an m-point of \mathbf{P}^n . Fix a homogeneous coordinate system x_0, \ldots, x_n such that $P = (1; 0; \ldots; 0)$ and $D = \{x_2 = \dots = x_n = 0\}$. Write $z_i := x_i/x_0, 1 \le i \le n$, and use z_1, \dots, z_n as affine coordinates around P. Let Z(n,k;P,D) be the closed subscheme defined by the equations given by all monomials in the variables z_1, \ldots, z_n of degree at least k + 2 and by all monomials of degree k + 1, except the n monomials $z_1^k z_i$, $1 \leq i \leq n$. Hence $(k+1)P \subset Z(n,k;P,D) \subseteq (k+2)P$, length $(Z(n,k;P,D)) = \binom{n+k}{n} + n$ and Z(n,k;P,D) = (k+2)P if and only if n = 1. We will say that Z(n, k; P, D) is a (k+1, k+2)-point of \mathbf{P}^n . Notice that Z(n, k; P, D) only depends from n, k, P and the tangent vector at P determined by D, but not from the coordinate system, because if instead of z_1 we write $z_1 + M$ with M a power series in z_1, \ldots, z_n with no term of degree ≤ 1 , then all terms $(z_1+M)^k z_i - z_1^k z_i, 1 \le i \le n$, are zero modulo the ideal sheaf of (k+2)P. We will say that Z(n,k;P,D) is a (k+1,k+2)-point of \mathbf{P}^n . Let Z(n,k;P,D)'be the closed subscheme defined by the equations given by all monomial in the variables z_1, \ldots, z_n of degree at least k+2 and by all monomials of degree k+1, except the monomial z_1^{k+1} . The scheme Z(n,k;P,D)' depends only from n,k,Pand the tangent direction of P determined by D, length(Z(n,k;P,D)') = $\binom{n+k}{n} + 1$, and $(k+1)P \subset Z(n,k;P,D)' \subseteq Z(n,k;P,D)$. We will say that Z(n,k;P,D)' is a (k+1;1)-point of \mathbf{P}^n . Now we list our main results.

Theorem 1. For all positive integers n, k there is a positive integer a(n, k)with the following properties. Fix non-negative integers $s, d, b, a_m, 2 \le m \le k + 1$, such that $d \ge a(n, k)$. Let $Z \subset \mathbf{P}^n$ be a general union of s (k+1,k+2)points, b (k;1)-points, and a_m m-points of \mathbf{P}^n for all $2 \le m \le k + 1$. Then either $h^1(\mathbf{P}^n, \mathcal{I}_Z(d)) = 0$ (case length $(Z) \le {\binom{n+d}{n}}$) or $h^0(\mathbf{P}^n, \mathcal{I}_Z(d)) = 0$ (case length $(Z) \ge {\binom{n+d}{n}}$).

Corollary 1. For all positive integers n, k there is a positive integer d(n, k) with the following properties. Fix integers s > 0 and $d \ge d(n, k)$. Let $Z \subset \mathbf{P}^n$ be a general union of s (k+1,k+2)-points of \mathbf{P}^2 . Then either $h^1(\mathbf{P}^2, \mathcal{I}_Z(d)) = 0$ (case $s\binom{n+k}{n} + sn \le \binom{n+d}{n}$) or $h^0(\mathbf{P}^2, \mathcal{I}_Z(d)) = 0$ (case $s\binom{n+k}{n} + sn \ge \binom{n+d}{n}$), i.e. $O_{k,n,d}$ is ordinary. We may take $d(2, k) = (k+2)^4$.

The "i.e. " part (i.e. that $h^0(\mathbf{P}^n, \mathcal{I}_Z(d)) = 0$ if and only if $\dim(S^{s-1}(O_{k,n,d})) = \binom{n+d}{n} - 1$ and that $h^1(\mathbf{P}^n, \mathcal{I}_Z(d)) = 0$ if and only if $\dim(S^{s-1}(O_{k,n,d})) = s\binom{n+k}{n} + n - 1$ is proved in [2], §3. The case n = 2 of Corollary 1 is not covered by Theorem 1. We will directly prove it. However, to prove Corollary 1 for an integer $n \geq 3$ we will use Theorem 1 for the integer n' := n - 1.

The case n = 2 of the following result seems to be rather strong (see section 3 for its proof and for a less interesting result with an upper bound for $h^1(\mathbf{P}^n, \mathcal{I}_Z(d))$).

Proposition 1. Fix positive integers n, k, d, s. Let $Z \subset \mathbf{P}^n$ (resp. $W \subset \mathbf{P}^n$) be a general union of s (k + 1, k + 2)-points (resp. (k + 1)-points). If $h^0(\mathbf{P}^n, \mathcal{I}_W(d)) \leq s$, then $h^0(\mathbf{P}^n, \mathcal{I}_Z(d)) = 0$, i.e. $\dim(S^{s-1}(O_{k,n,d})) = \binom{n+d}{n} - 1$.

Question 1. Fix an integer $k \geq 2$. Is there an integer d(k) not depending from n such that either $h^1(\mathbf{P}^n, \mathcal{I}_Z(d)) = 0$ (case $s(k+2)(k+1)/2 + 2s \leq (d+2)(d+1)/2$) or $h^0(\mathbf{P}^n, \mathcal{I}_Z(d)) = 0$ for all integers $n \geq 2, k > 0$ and $d \geq d(k)$, where Z is a general union of s (k+1,k+2)-points of \mathbf{P}^n ? Is it possible to take d(k) = 3(k+1)?

It should be easy to disprove or get numerical evidence for the very optimistic bound d(k) = 3(k + 1). The huge difference between 3(k + 1) and $(k + 2)^4$ explains why we did not tried to get a little better bound for d(2, k).

2. Preliminary results

For any smooth and connected variety A, any $P \in A$ and any integer m > 0let $\{mP, A\}$ denote the closed subscheme of A with $(\mathcal{I}_{P,A})^m$ as its ideal sheaf. Fix an effective Cartier divisor D of A. For any closed subscheme Z of A let $\operatorname{Res}_D(Z)$ denote the residual of Z with respect to D, i.e. the closed subscheme of A with $\mathcal{I}_Z : \mathcal{I}_A$ as its ideal sheaf. For any $L \in \operatorname{Pic}(A)$ we have an exact sequence

$$0 \to \mathcal{I}_{\operatorname{Res}_D(Z),A} \otimes L(-D) \to \mathcal{I}_{Z,A} \otimes L \to \mathcal{I}_{Z \cap D,D} \otimes (L|D) \to 0$$
(1)

Notation 1. Fix a hyperplane $H \subset \mathbf{P}^n$, $P \in H$ and a zero-dimensional scheme $A \subset \mathbf{P}^n$ such that $A_{red} = \{P\}$. Set $A_0 := A$. Define inductively the schemes A_i and B_i , $i \geq 1$, by the formulas $A_i := \operatorname{Res}_H(A_{i-1})$ and $B_i := A_i \cap H$. For every integer $i \geq 1$, set $c_i := \operatorname{length}(B_{i-1})$. We will say that A has type (c_1, c_2, \ldots) with respect to H. Since A is zero-dimensional and $A_{red} \subseteq H$, we have $c_i = 0$ for $i \gg 0$, $c_{i+1} \leq c_i$ for all i, and $\operatorname{length}(A) = \sum_{i\geq 1} c_i$. Instead of a sequence (c_1, c_2, \ldots) we will usually write a finite string (c_1, \ldots, c_s) if $c_{s+1} = 0$, i.e. if $c_i = 0$ for all i > s.

Remark 1. Fix a hyperplane $H \subset \mathbf{P}^n$, $n \geq 2$, an integer k > 0, $P \in H$ and a line $D \subseteq \mathbf{P}^n$ such that $P \in D$. Set $Z_0 := Z(n,k;P,D)$ and $W_0 := Z_0 \cap H$. Define inductively the schemes Z_i and W_i , $i \geq 1$, by the formulas $Z_i :=$ $\operatorname{Res}_H(Z_{i-1})$ and $W_i := Z_i \cap H$. First assume $D \subseteq H$. We have $W_0 = Z(n - 1, k; P, D)$, $Z_1 = Z(n, k - 1; P, D)'$, $W_1 = Z(n - 1, k - 1; P, D)'$, $Z_i = (k - i)P$ and $W_i = \{(k + 2 - i)P, H\}$ for $2 \leq i \leq k + 1$, and $Z_i = W_i = \emptyset$ for all $i \geq k+2$. Now assume $D \nsubseteq H$. We have $W_i = \{(k+1-i)P, H\}$ for $0 \leq i \leq k$, $W_{k+1} = \{2P, H\}, W_{k+2} = \{P\}, W_i = \emptyset$ for all $i \geq k+3$, $Z_i = Z(n, k - i; P, D)$ for $1 \leq k$, $Z_{k+1} = 2P$, $Z_{k+2} = \{P\}$ and $Z_i = \emptyset$ for all $i \geq k+3$. If n = 2and $D \neq H$, then Z(2, k; P, D) has type $(c_1, \ldots$ with respect to H, where $c_i = k + 2 - i$ for $1 \le i \le k$, $c_{k+1} = 2$, $c_{k+2} = 1$ and $c_j = 0$ for all $j \ge k + 3$. Z(2, k; P, H) has type $(c_1, \ldots$ with respect to H, where $c_i = k + 3 - i$, for $i = 2, c_i = k + 2 - i$ for $3 \le i \le k + 1$ and $c_j = 0$ for all $j \ge k + 2$. If $D \subseteq H$, then we will say that Z(n, k; P, D) is strongly supported by H. We will say that a (k+1;1)-point Z(n, k; Q, R)' is strongly supported by H if $Q \in H$ and $D \subseteq H$. Now we fix an integer m > 0. Notice that $mP|H = \{mP, H\}$ and $\operatorname{Res}_H(mP) = (m-1)P$, with the convention $0P = \emptyset$.

Remark 2. Here we will explain three easy cases of the Differential Horace Lemma ([1]). Take the set-up of Remark 1. Assume $P \in D \subseteq H$. Let $A \subset \mathbf{P}^2$ be any zero-dimensional subscheme such that $P \notin A_{red}$. To prove $h^{1}(\mathbf{P}^{2}, \mathcal{I}_{A\cup Z(n,k;P,D)}(d)) = 0$ (resp. $h^{0}(\mathbf{P}^{n}, \mathcal{I}_{A\cup Z(n,k;P,D)}(d)) = 0$), it is sufficient to prove $h^1(H, \mathcal{I}_{A \cap H \cup \{P\}}(d)) = 0$ and $h^1(\mathbf{P}^n, \mathcal{I}_{A \cup B}(d-1)) = 0$ (resp. $h^0(H, \mathcal{I}_{A \cap H \cup \{P\}}(d)) = 0$ and $h^0(\mathbf{P}^n, \mathcal{I}_{A \cup B}(d-1)) = 0)$, where B is a virtual scheme of type $(c_1, \ldots$ with $c_1 = 1, c_2 = \binom{n+k}{n-1} + n - 1, c_3 = \binom{n+k-1}{n-1} + 1,$ $c_i = \binom{n+k+2-i}{n-1}$ for $4 \le i \le k+2$ and $c_j = 0$ for all $j \ge k+3$. Notice $c_{k+2} = n$ and $c_{k+3} = 0$. Roughly speaking, we insert in H first P, then Z(n-1,k;P,D), then Z(n-1,k-1;P,D)' and then $\{(k+1-i)P,H\}$ for $1 \leq i \leq k-1$. In this case we will say that we applied the Differential Horace Lemma with respect to the sequence $(1, \binom{n+k}{n-1} + n - 1, \dots, n)$. Now we consider Z(n, k-1; P, D)'. We assume $D \subseteq H$. In this case we insert in H first P, then Z(n-1, k-1; P, D)' and then $\{(k-i)P, H\}$ for $1 \le i \le k-2$. In this case we will say that we applied the Differential Horace Lemma with respect to the sequence $(1, \binom{n+k-1}{n-1} + 1, \ldots, n)$. Now we fix an integer $m \ge 2$. Instead of mP we first insert in H the point P and then $\{(m+1-i)P, H\}$ for $1 \leq i \leq m+2$. In this case we will say that we applied the Differential Horace Lemma with respect to the sequence $(1, \binom{n+m-1}{n-1}, \ldots, n)$. We may apply the Differential Horace Lemma simultaneously with respect to several distinct points of H.

Lemma 1. Fix integers d > 0, $a \ge 0$, $b \ge 0$, c > 0, a zero-dimensional scheme $E \subset \mathbf{P}^n$ and a hyperplane $H \subset \mathbf{P}^n$. Let G be the union of E and c general points of H. Then:

- (i) $h^0(\mathbf{P}^n, \mathcal{I}_G(d)) \leq a \text{ if and only if } h^0(\mathbf{P}^n, \mathcal{I}_F(d)) \leq a + c \text{ and } h^0(\mathbf{P}^n, \mathcal{I}_{Res_H(E)}(d-1)) \leq a.$
- (ii) $h^1(\mathbf{P}^n, \mathcal{I}_G(d)) \leq b$ if and only if $h^1(\mathbf{P}^n, \mathcal{I}_F(d)) \leq b$ and $h^0(\mathbf{P}^n, \mathcal{I}_{Res_H(E)}(d-1)) \leq \binom{n+d}{n} length(E) c + b.$

Proof. We will first check part (i). The "only if" part follows from the residual exact sequence (1), because $\operatorname{Res}_H(E) = \operatorname{Res}_H(G)$. Assume $h^0(\mathbf{P}^n, \mathcal{I}_E(d)) \leq a + c$ and $h^0(\mathbf{P}^n, \mathcal{I}_{\operatorname{Res}_H(E)}(d-1)) \leq a$ Let $S \subset \mathbf{P}^n$ be a general union of a points of \mathbf{P}^n . In particular we have $S \cap H = \emptyset$, $S \cap E_{red} = \emptyset$, $h^0(\mathbf{P}^n, \mathcal{I}_{E \cup S}(d)) \leq c$ and $h^0(\mathbf{P}^n, \mathcal{I}_{\operatorname{Res}_H(E) \cup S}(d-1)) = 0$. To check part (i) it is sufficient to prove $h^0(\mathbf{P}^n, \mathcal{I}_{G \cup S}(d) = 0)$. Let $\rho : H^0(\mathbf{P}^n, \mathcal{I}_{E \cup S}(d)) \to H^0(H, \mathcal{I}_{E \cap H}(d))$ be the restriction map. Since $h^0(\mathbf{P}^n, \mathcal{I}_{\operatorname{Res}_H(E)\cup S}(d-1)) = 0$, ρ is injective. Hence $\dim(\operatorname{Im}(\rho)) \leq c$. The generality of $G \setminus$ for fixed $E \cup S$ gives that no non-zero element of $\operatorname{Im}(\rho)$ vanishes at all points of F, concluding the proof of part (i). Since $h^0(\mathbf{P}^n, \mathcal{I}_G(d)) - h^1(\mathbf{P}^n, \mathcal{I}_G(d)) = \operatorname{length}(E) + c + \binom{n+d}{n}$, parts (i) and (ii) are equivalent (for suitable integers a, b).

3. The proofs

Proof of Proposition 1. Order the connected components of Z and of W. Let Z_i , $0 \leq i \leq s$, be the union of the first *i* connected components of Z and the last s - i connected components of W. It is sufficient to prove $h^0(\mathbf{P}^n, \mathcal{I}_{Z_i}(d)) \leq s - i$ for all *i*. By assumption this inequality is satisfied for i =0. Hence it is sufficient to prove $h^0(\mathbf{P}^n, \mathcal{I}_{Z_i}(d)) \leq \max\{0, h^0(\mathbf{P}^n, \mathcal{I}_{Z_{i-1}}(d)) - 1\}$ for all $1 \leq i \leq s$. Fix an integer i such that $1 \leq i \leq s$. To prove the last inequality we may assume $h^0(\mathbf{P}^n, \mathcal{I}_{Z_{i-1}}(d)) > 0$. Let P denote the support of the (s-i-1)-th connected component of W. Let E denote the union of the first i-1 connected components of Z, the last s-i connected components of W and a general scheme contained between (k+1)P and (k+2)P and with length $\binom{n+k}{n}+1$, i.e. the minimal length among the schemes strictly containing (k+1)P. $\dot{h}^0(\mathbf{P}^n, \mathcal{I}_{Z_{i-1}}(d)) > h^0(\mathbf{P}^n, \mathcal{I}_E(d))$ ([4], Proposition 2.2). For general P we may also assume that E and Z_i have the same support. We cannot claim $E \subset Z_i$ if $k \geq 2$ and $n \geq 2$, because, even moving the line through P giving the corresponding connected component of Z_i , Z_i does not contain a general enlargment of (k+1)P by a length one scheme. Take again the set up of the definition of Z(n,k;P,D) with the affine coordinates z_1,\ldots,z_n . Since we are in characteristic zero, the (k + 1)-powers L^{k+1} of all linear forms in z_1, \ldots, z_n spans the set of all homogeneous degree k+1 polynomials in the variables z_1, \ldots, z_n . Since $h^0(\mathbf{P}^n, \mathcal{I}_{Z_{i-1}}(d)) > h^0(\mathbf{P}^n, \mathcal{I}_E(d))$, there is at least one index j such that $1 \leq j \leq n$ and $h^0(\mathbf{P}^n, \mathcal{I}_E(d)) = h^0(\mathbf{P}^n, \mathcal{I}_F(d))$, where F is the scheme obtained from Z_{i-1} taking instead of (k+1)P the zero-set of all monomials of degree $\geq k+2$ and the ones of degree k+1 except z_i^{k+1} . Take $D = \{z_a = 0 \text{ for all } a \neq j\}$. With this choice of the line D we have $F \subset Z_i$ and hence $h^0(\mathbf{P}^n, \mathcal{I}_{Z_i}(d) < h^0(\mathbf{P}^n, \mathcal{I}_{Z_{i-1}}(d)).$

The same proof gives the following result.

Proposition 2. Fix positive integers n, k, d, s. Let $Z \subset \mathbf{P}^n$ (resp. $W \subset \mathbf{P}^n$) be a general union of s (k + 1, k + 2)-point (resp. (k + 1)-points). If $h^0(\mathbf{P}^n, \mathcal{I}_W(d)) \geq s$, then $h^1(\mathbf{P}^n, \mathcal{I}_Z(d)) \leq h^1(\mathbf{P}^n, \mathcal{I}_W(d)) + (n-1)s$.

Lemma 2. Fix integers d > k > 0, $s \ge 0$, $b \ge 0$, $a_i \ge 0$, $1 \le i \le k$ and e such that $0 \le e \le k+1$, $d \ge (k+2)^3$ and

$$(k+2)s + (k+1)b + \sum_{i=1}^{k} ia_i + e \le d+1$$
(2)

Then

$$(k+1)s + (k-1)b + \sum_{i=2}^{k} (i-1)a_i + e(k+2) \le d$$
(3)

Proof. Increasing if necessary a_1 we may assume

$$(k+2)s + (k+1)b + \sum_{i=1}^{k} ia_i + e = d+1$$
(4)

By (4) and (3) it is sufficient to prove that

$$s + 2b + \sum_{i=1}^{k} a_i \ge 1 + (k+2)(k+1)$$
(5)

The last inequality is true because $d \ge (k+2)^2(k+1) + 1$ and we assumed the equality (4).

We won't try to make explicit and small the integers a(n,k) and d(n,k) in the statements of Theorem 1 and Corollary 1, because for fixed k we didn't get as d(n,k) a polynomial function of n. Hence we will not give an explicit bound for the integer b(n,k) in the next lemma.

Lemma 3. For all integers $n \ge 2$ and k > 0 there is an integer b(n,k) > 0with the following property. Fix non-negative integers $x, d, a, a_m, e, 2 \le m \le k+1$, such that $e \le {\binom{n+k}{n-1}} + n - 2$, $d \ge b(n,k)$ and

$$x\binom{n+k}{n-1} + n - 1 + a\binom{n+k-1}{n-1} + 1 +$$

$$+ \sum_{m=2}^{k+1} a_m \binom{n+m-1}{n-1} + e \le \binom{n+d-1}{n-1}$$
(6)

Then

$$x\binom{n+k-1}{n-1} + 1 + a\binom{n+k-2}{n-1} + (7) + \sum_{m=2}^{k+1} a_m\binom{n+m-2}{n-1} + e\binom{n+k}{n-1} + n-1 \le \binom{n+d-2}{n-1}$$

Proof. Increasing if necessary a_2 we may assume

$$x\binom{n+k}{n-1} + n - 1 + a\binom{n+k-1}{n-1} + 1 +$$

$$+ \sum_{m=2}^{k+1} a_m \binom{n+m-1}{n-1} + e \ge \binom{n+d-1}{n-1} - n + 2$$
(8)

676

Under this additional assumption it is sufficient prove the following inequality

$$x\binom{n+k-1}{n-2} + n-2 + a\binom{n+k-2}{n-2} + 1 + \sum_{m=2}^{k+1} a_m \binom{n+m-2}{n-2} \quad (9)$$

$$\ge (\binom{n+k}{n-1} + n-2)^2 + n + \binom{n+d-2}{n-2} + n-2$$

Set $e_0 := (\binom{n+k}{n-1} + n - 1)/(\binom{n+k-1}{n-1} + 1), e_1 := (\binom{n+k-1}{n-1} + 1)/(\binom{n+k-2}{n-1})$ and $e_m := \binom{n+m-1}{n-1}/\binom{n+m-2}{n-1} = (n+m-1)/(m-1)$ for all $2 \le m \le k+1$. Hence $e_i \ge (n+k)/k$ for all *i*. Since $\binom{n+d-1}{n-1}/\binom{n+d-2}{n-1} = (n+d-1)/d$, we conclude. \Box

Proof of Corollary 1 for n = 2. Fix a line $H \subset \mathbf{P}^2$. Set $\epsilon := (d + 2)(d + 1)/2 - s(k + 2)(k + 1)/2 + 2s$. Increasing or decreasing the integer s we see that (for a fixed degree d) it is sufficient to check all cases with $-(k^2 + 3k)/2 \leq \epsilon \leq (k^2 + 3k)/2$. From now on we will assume that these inequalities are satisfied. Until part (e) we will also assume $\epsilon \geq 0$, i.e. we will check that $h^1(\mathbf{P}^2, \mathcal{I}_Z(d)) = 0$.

(a) Write $u_1 := \lfloor (d+1)/(k+2) \rfloor$ and $v_1 := d+1-u_1(k+2)$. If $s < u_1+v_1$, then we will say that we stopped at the degree d. Assume $s \ge u_1 + v_1$. We specialize Z to a general union Z' of $s - u_1 - v_1$ (k + 1, k + 2)-points, u_1 (k+1, k+2)-points strongly supported by H and v_1 virtual schemes obtained applying Differential Horace Lemma with respect to the sequence (1, k+2, k+1) $1, k - 1, \dots, 2$, i.e. applying Remark 2 to the scheme Z(2, k; P, H). Since length $(H \cap Z') = (k+2)u_1 + v_1 = d+1$ and $H \cong \mathbf{P}^1, h^i(\mathbf{P}^2, \mathcal{I}_{Z'}(d)) =$ $h^i(\mathbf{P}^2, \mathcal{I}_{\operatorname{Res}_H(Z')}(d))$ by the Differential Horace Lemma. The virtual residue $Z_1 := \operatorname{Res}_H(Z')$ intersects H in u_1 connected schemes with length k+1 and v_1 connected schemes with length k+2. Lemma 2 and our assumption on d gives $e_1 := \text{length}(Z_1 \cap H) \leq d$. Set $u_2 := |(d-e_1)/(k+2)|$ and $v_2 := d-e_1-(k+2)u_2$. If $u_1 + v_1 \leq s < u_1 + v_1 + u_2 + v_2$, then we will say that we stopped at the degree d-1. Assume $s \geq u_1 + v_1 + u_2 + v_2$. We degenerate Z_1 to a general union Z'_1 of $s - u_1 - v_1 - u_2 - v_2$ (k+1,k+2)-points, the connected components of Z_1 intersecting Z, u_2 (k+1,k+2)-points strongly supported by H and v_2 virtual schemes obtained applying Differential Horace Lemma with respect to the sequence $(1, k+2, k+1, k-1, \cdots, 2)$. Set $Z_2 := \operatorname{Res}_H(Z'_1)$ and $e_2 := \text{length}(Z_2 \cap H)$. Since $d-1 \ge (k+2)^2(k+1)$, Lemma 2 gives $e_2 \le d-1$. Set $u_3 := |(d-1-e_2)/(k+2)|$ and $v_3 := d-1-e_2-(k+2)u_3$. And so on, up to the degree d - k - 1 defining each time the integers u_i, v_i, e_{i-1} , unless we stopped, say at the degree x, because $\sum_{i=1}^{d-x-1} (u_i + v_i) \leq s < \sum_{i=1}^{d-x} (u_i + v_i)$. Fix an integer i such that Z_i is defined. Notice that the supports of the connected components of $Z_1 \cap H$ are general in H in the following very strong sense: we may fix the support of all except except one prescribed in advance and then take as the support of the choosen component a general point of H. Since we are in characteristic zero, a general lemma say that $Z_i \cap H$ (for

general supports) imposes the maximal possible number of components of a prescribed linear system Λ on H ([5]).

(b) Assume that we never stopped until the degree d - k - 1. Z_{k+1} contains u_1 reduced connected components, all of them contained in H. Let E_{k+1} be the union of the unreduced components of Z_{k+1} . By Remark 1 to prove $h^1(\mathbf{P}^2, \mathcal{I}_{Z_{k+1}}(d-k-1)) = 0$ and hence to prove $h^1(\mathbf{P}^2, \mathcal{I}_Z(d)) = 0$, it is sufficient to prove $\tilde{h}^1(\mathbf{P}^2, \mathcal{I}_{E_{k+1}}(d-k-1)) = 0$ and $h^0(\mathbf{P}^2, \mathcal{I}_{\text{Res}_H(E_{k+1})}(d-k-2)) \le \epsilon$. Here we will check the h^1 -vanishing leaving the h^0 -inequality (and all the other h^0 -inequalities which will soon appear) to part (d). Set $e_{k+1} := \text{length}(E_{k+1} \cap$ H), $u_{k+2} := \lfloor (d-k-e_{k+1})/(k+2) \rfloor$ and $v_{k+2} := d-k-e_{k+1}-(k+2)u_{k+2}$. If $s < \sum_{i=1}^{k+2} (u_i + v_i)$, then we will say that we stopped at the degree d - k - 1. Now assume $s \ge \sum_{i=1}^{k+2} (u_i + v_i)$. We degenerate E_{k+1} to a general union E'_{k+1} of $s - \sum_{i=1}^{k+2} (u_i + v_i)$ (k+1,k+2)-points, all the connected components of E_{k+1} intersecting H, u_{k+2} (k+1,k+2)-points strongly supported by H and v_2 virtual schemes obtained applying Differential Horace Lemma with respect to the sequence $(1, k + 2, k + 1, k - 1, \dots, 2)$. Hence $length(E'_{k+1} \cap H) = d - k$. $\operatorname{Res}_H(E'_{k+2})$ contains u_2 reduced connected components, all of them contained in H. Let E_{k+2} denote the union of the unreduced connected components of $\operatorname{Res}_{H}(E'_{k+2})$. By Remark 1 to prove $h^{1}(\mathbf{P}^{2}, \mathcal{I}_{E_{k+1}}(d-k-1)) = 0$ it is sufficient to prove $h^1(\mathbf{P}^2, \mathcal{I}_{E_{k+2}}(d-k-2)) = 0$ and $h^0(\mathbf{P}^2, \mathcal{I}_{\operatorname{Res}_H(E_{k+2})}(d-k-3)) \le \epsilon + u_1.$ And so on, defining each time the integers u_i, v_i, e_{i-1} and the schemes E_i , E'_i , unless we stopped, say at the degree x, because $\sum_{i=1}^{d-x-1} (u_i + v_i) \leq s < 1$ $\sum_{i=1}^{d-x} (u_i + v_i)$. We need to check $h^1(\mathbf{P}^2, \mathcal{I}_{E_i}(d-i)) = 0$ for at least one index *i*, but we need to prove $h^0(\mathbf{P}^2, \mathcal{I}_{\operatorname{Res}_H(E_i)}(d-i-1)) \leq \epsilon + \sum_{j=1}^{i-k} u_j$ for all integers i for which E_i is defined. Since at each step we applied Lemma 2, E_i is defined only for $i \leq d-1-(k+2)^3$. Here we want to check that we stopped before arriving at the degree $d-1-(k+2)^3$, i.e. we want to check that $s < \sum_{i=1}^{d-1-(k+2)(k+1)} (u_i + v_i)$. For each $i \ge k = 1$ (resp. $1 \le i \le k+1$) we have $(d+2-i)(d+1-i)/2 - \epsilon = \text{length}(E_i) + \sum_{j=1}^{i-k-1} u_j \text{ (resp. } (d+2-i)(d+1-i)/2 - i)(d+1-i)/2 - i)(d+1 \epsilon = \text{length}(Z_i)$). Notice that $s \ge \sum_{j=1}^{i} (u_j + v_j)$ if E_i or Z_i are defined, $v_j \le k+1$ for all j, and $s((k+2)(k+1)/2+2) = (d+2)(d+1)/2 - \epsilon$. Hence if E_i or Z_i are defined, then $\sum_{j=1}^{i} u_j \ge (k+1)i + ((d+2)(d+1)/2 - \epsilon)/((k+2)(k+1)/2 + 2).$ Thus if $E_{d-1-(k+2)^3}$ is defined, then length $(E_{d-1-(k+2)^3-k-1} \leq (d-k-1)(k+1) - (k+1)(k+1))$ $((d+2)(d+1)/2 - \epsilon)/((k+2)(k+1)/2 + 2) < 0$ (just use that $|\epsilon| \le (k^2 + 3k)/2$ and the assumption $d \ge (k+2)^4$, contradiction.

(c) Now assume that we stopped at the degree x. Hence we defined either Z_{d-x+1} (case $x \ge d-k$) or E_{d-x-1} (case $x \le d-k-1$). Call F_{d-x-1} the scheme we defined. We defined the integers e_{d-x-1} , u_{d-x} and v_{d-x} and $\sum_{i=1}^{d-x-1} (u_i+v_i) \le s < \sum_{i=1}^{d-x} (u_i+v_i)$. Write $a := \min\{u_{d-x}, s-\sum_{i=1}^{d-x-1} (u_i+v_i)\}$ and $b := s - a - \sum_{i=1}^{d-x-1} (u_i+v_i)$. We degenerate F_{d-x-1} to a general union G of the connected components of F_{d-x-1} intersecting H, a (k+1,k+2)-points strongly supported by H and virtual schemes obtained applying Differential Horace Lemma with respect to the sequence $(1, k + 2, k + 1, k - 1, \dots, 2)$. We apply k + 1 times the Horace Differential Lemma and reduce to the statement that the empty set have good coomology. We may apply Lemma 2 at the first step because $x \ge (k + 2)^3$. We do not need to apply it in the next k steps, because neither in the first step nor in the following ones we insert any new virtual scheme of type $(1, k + 2, k + 1, k - 1, \dots, 2)$ (it is taking the residual of one of them which compels us to use Lemma 2 with $e \ne 0$). Call β the number of steps we used in part (c) to arrive to $E_{\beta}\emptyset$. If $i \ge \beta$, then $F_i = \operatorname{Res}_H(F_i) = \emptyset$ and the h^0 -inequalities are satisfied (see part (c)). If $i < \beta$ after at most $\beta - i$ steps every h^0 -inequality coming from $h^0(\mathbf{P}^2, \mathcal{I}_{\operatorname{Res}_H(F_i)}(d-i-1)) \le \epsilon + \sum_{j=1}^{i-k} u_j$ (or a similar one for F_i) is proved as in part (c).

(d) At each step in part (b) we got a new h^0 -inequality. We need to show that we may control simultaneously all these inequalities. All these inequalities are of the form $h^0(\mathbf{P}^2, \mathcal{I}_{\operatorname{Res}_H(E_i)}(d-k-i)) \leq \epsilon + \sum_{j=1}^i u_j$. Let F_i be the union of all unreduced components of $\operatorname{Res}_H(E_i)$. $\operatorname{Res}_H(E_i) \setminus F_i$ is a general union of $x_i \geq 0$ points of H. Hence $h^0(\mathbf{P}^2, \mathcal{I}_{\operatorname{Res}_H(E_i)}(d-k-i)) \leq \epsilon + \sum_{j=1}^i u_j$ if $h^0(\mathbf{P}^2, \mathcal{I}_{F_i}(d-k-i)) \leq \epsilon + \sum_{j=1}^i u_j + x_i$ and $h^0(\mathbf{P}^2, \mathcal{I}_{\operatorname{Res}_H(F_i)}(d-k-i-1)) \leq \epsilon + \sum_{j=1}^i u_j$. We iterate the same game for each of these inequalities. We specialize F_i to F'_i (using also the Differential Horace Lemma) in such a way that length $(F'_i \cap H) = d - k - i + 1$ and apply x_i is the number of 2-points of E_i with support on H. At the next step using F'_i the new x_{i+1} is the number of 3-points of E_i with support on H.

(e) Here we assume $-(k^2 + 3k)/2 \leq \epsilon \leq 0$. We take $u_i, v_i.e_{i-1}, Z_i, Z'_i$ as in part (a) and E_{k+1} as in part (b). Now we need to check $h^0(\mathbf{P}^2, \mathcal{I}_{E_{k+1}}(d-k-1)) = 0$ and $h^0(\mathbf{P}^2, \mathcal{I}_{\operatorname{Res}_H(E_{k+1})}(d-k-1)) = 0$. Then we continue as in part (d), except that there is no h^1 -vanishing and in all h^0 -inequalities listed to be checked the term " ϵ " does not appear. The other h^0 -inequalities appearing for $\epsilon \leq 0$ are of the form $h^0(\mathbf{P}^2, \mathcal{I}_{E_i}(d-k-i)) \leq \sum_{j=1}^{i-1} u_j$ and are handled in the same way.

Proof of Theorem 1. Set $\epsilon := \epsilon(n, k, d, s, b, a_1, \dots, a_{k+1}) := s\binom{n+k}{n} + n) + b\binom{n+k-1}{n} + 1) + \sum_{i=2}^{k+1} \binom{n+i}{n} - \binom{n+d}{n}$. Hence $\epsilon = \text{length}(Z) - \binom{n+d}{n}$. Fix a hyperplane $H \subset \mathbf{P}^n$. Since Theorem 1 is trivially true when n = 1 taking a(1,k) = 1, we may assume that the result is true for n' := n - 1 and in particular there is a finite integer a(n-1,k). Fix an integer $d \geq \max\{a(k-1,n)+2k+2,b(n,k)+2k+2\}$, where b(n,k) is any positive integer satisfying the thesis of Lemma 3. Later, we will impose $d \gg 0$ we no explicit allowable integer d. Take Z as in the statement of Theorem 1. In parts (a), (b), (c), (d) and (e) we will assume $\epsilon \geq 0$, i.e. we these parts we will check that $h^1(\mathbf{P}^n, \mathcal{I}_Z(d)) = 0$.

(a) Let s_1 be the maximal non-negative integer such that $s_1(\binom{n+k}{n-1} + n - 1) \leq \binom{n+d-1}{n-1}$. Let b_1 be the maximal non-negative integer $\leq b$ such that

 $b_1(\binom{n+k}{n-1}+1) \leq \binom{n+d-1}{n-1} - s_1(\binom{n+k}{n-1}+n-1)$. We define the integers $a_{m,1}, 1 \leq m \leq n$ k+1, by decreasing induction on m. Let $a_{k+1,1}$ be the maximal non-negative integer $\leq a_{k+1}$ such that $a_{k+1,1}\binom{n+k}{n-1} \leq \binom{n+d-1}{n-1} - s_1(\binom{n+k}{n-1} + n-1) - b_1(\binom{n+k}{n-1} + n-1) -$ 1). Assume defined the integers $a_{j,1}$ for $k+2 \ge j \ge m$ for some integer $m \geq 3$. Let $a_{m-1,1}$ be the maximal non-negative integer $\leq a_{m-1}$ such that $\begin{array}{l} m \geq 0, & \text{Let } a_{m-1,1} \text{ be the intermed non negative medger} \geq a_{m-1} \text{ such that} \\ a_{m-1,1}\binom{n+m-2}{n-1} \leq \binom{n+d-1}{n-1} - s_1\binom{n+k}{n-1} + n - 1 - b_1\binom{n+k}{n-1} + 1 - \sum_{j=2}^{k+1} a_{j,1}\binom{n+j-1}{n-1}. \\ \text{Set } v_1 := \binom{n+d-1}{n-1} - s_1\binom{n+k}{n-1} + n - 1 - b_1\binom{n+k}{n-1} + 1 - \sum_{j=2}^{k+1} a_{j,1}\binom{n+j-1}{n-1}. \\ \text{If } v_1 < s - s_1 + b - b_1 + \sum_{j=2}^{k+2} (a_j - a_{j,1}), \text{ then we will say that we stopped} \end{array}$ at the degree d-1. Assume $v_1 \ge s - s_1 + b - b_1 + \sum_{j=2}^{k+2} (a_j - a_{j,1})$. Set $y_1 := \min\{v_1, s - s_1\}, f_1 := \min\{b - b_1, v_1 - y_1\}$ and $g_{k+1,1} := \min\{a_{k+1} - b_{k+1}\}$ $a_{k+1,1}, v_1 - e_1 - f_1$. Define by decreasing induction the integers $g_{j,1}$ for all $k \ge j \ge 2$ in a similar way. Hence $v_1 \ge y_1 + f_1 + \sum_{j=2}^{k+1} g_{j,1}$ and if some $g_{j,1} > 0$, then $s = s_1 + y_1$, $b = b_1 + f_1$ and $a_j = a_{j,1} + g_{j,1}$ for all $m + 1 \le j \le k + 1$. If $v_1 > y_1 + f_1 + \sum_{j=2}^{k+1} g_{j,1}$, then we will say that we stopped at the degree (d, 1). Notice that in this case we have $s = s_1 + y_1$, $b = b_1 + f_1$ and $a_j = a_{j,1} + g_{j,1}$ for all j. Assume $v_1 = e_1 + f_1 + \sum_{j=2}^{k+1} g_{j,1}$. We degenerate Z' to a general union of $s - s_1 - y_1$ (k+1,k+2)-points, $b - b_1 - f_1$ (k,1)-points, $a_m - a_{m,1} - g_{m,1}$ m-points for all $2 \le m \le k+1$, and v_1 virtual schemes, y_1 of them obtained applying the Differential Horace Lemma (i.e. Remark 2) with respect to the sequence $(1, \binom{n+k}{n-1} + n - 1, \dots, n), f_1$ of them with respect to the sequence $(1, \binom{n+k}{n-1}) + (1, \binom{n+k}{n-1})$ $1, \ldots, n$ and $g_{m,1}, 2 \leq m \leq k+2$, of them with respect to the sequence $(1, \binom{n+m-1}{n-1}, \ldots, n)$. Hence $\operatorname{length}(Z' \cap H) = \binom{n+d-1}{n-1}$. Since $d \geq a(n-1,k)$ we may apply the inductive assumption and get $h^1(H, \mathcal{I}_{Z' \cap H}(d)) = 0, i = 0, 1.$ Hence $h^i(\mathbf{P}^n, \mathcal{I}_Z(d)) \leq h^i(\mathbf{P}^n, \mathcal{I}_{\operatorname{Res}_H(Z')}(d-1)), i = 0, 1$. Let E_1 be the union of the unreduced components of $\operatorname{Res}_H(Z')$. $\operatorname{Res}_H(Z') \setminus H$ is a general union of $a_{2,1}$ points of H. In this case we will write $x_1 := a_{2,1}$. By Lemma 1 to prove $h^1(\mathbf{P}^n, \mathcal{I}_{\operatorname{Res}_H(Z')}(d-1)) = 0$ it is sufficient to prove $h^1(\mathbf{P}^n, \mathcal{I}_{E_1}(d-1)) = 0$ and $h^0(\mathbf{P}^n, \mathcal{I}_{\operatorname{Res}_H(E_1)}(d-1)) \leq \epsilon$. Here we will only check the h^1 -vanishing, leaving this h^0 -inequality and all the h^0 -inequalities which will soon arrive to steps (d) and (e). Set $e_1 := \text{length}(E_1 \cap H)$. Lemma 3 and the assumption $d \ge b(n, k) + +$ gives $e_1 + x_1 \leq \binom{n+d-2}{n-1}$. Let s_2 be the maximal non-negative integer $\leq s - s_1$ such that $s_2(\binom{n+k}{n-1} + n - 1) \leq \binom{n+d-2}{n-1} - e_1$. Let b_2 be the maximal non-negative integer $\leq b - b_1$ such that $b_2(\binom{n+k}{n-1} + 1) \leq \binom{n+d-2}{n-1} - s_2(\binom{n+k}{n-1} + n - 1) - e_1$. We define the integers $a_{m,2}$, $1 \leq m \leq k+1$, by decreasing induction on *m*. Let $a_{k+1,2}$ be the maximal non-negative integer $\leq a_{k+1} - a_{k+1,1}$ such that $a_{k+1,2} \binom{n+k}{n-1} \leq \binom{n+d-2}{n-1} - s_2 \binom{n+k}{n-1} + n - 1 - b_2 \binom{n+k}{n-1} + 1 - e_1$. Assume defined the integers $a_{j,2}$ for $k+2 \geq j \geq m$ for some integer $m \geq 3$ let $a_{m-1,2}$ be the maximal non-negative integer $\leq a_{m-1} - a_{m-1,1}$ such that $a_{m-1,2} \binom{n+m-2}{n-1} \leq a_{m-1,2} \binom{n+m-2}{n-1} < a$ $\binom{n+d-1}{n-1} - s_2\binom{n+k}{n-1} + n - 1 - b_2\binom{n+k}{n-1} + 1 - \sum_{j=m}^{k+1} a_{j,2}\binom{n+j-1}{n-1} - e_1. \text{ Set}$ $v_2 := \binom{n+d-1}{n-1} - e_1 - s_2\binom{n+k}{n-1} + n - 1 - b_2\binom{n+k}{n-1} + 1 - \sum_{j=2}^{k+1} a_{j,2}\binom{n+j-1}{n-1}. \text{ If}$

 $v_2 < (s - s_1 - s_2) + (b - b_1 - b_2) + \sum_{j=2}^{k+2} (a_j - a_{j,1} - a_{j,2})$, then we will say that we stopped at the degree d-2. Assume $v_2 \ge (s-s_1-s_2)+(b-b_1-b_2)+\sum_{j=2}^{k+2}(a_j-b_j)+(b-b_1-b_2)+\sum_{j=2}^{k+2}(a_j$ $a_{j,1} - a_{j,2}$). Set $y_2 := \min\{v_2, s - s_1 - s_2\}, f_2 := \min\{b - b_1 - b_2, v_2 - y_2\}$ and $g_{k+1,2} := \min\{a_{k+1} - a_{k+1,1}, v_2 - y_2 - f_2\}$. Define by decreasing induction the integers $g_{j,2}$ for all $k \ge j \ge 2$ in a similar way. Hence $v_2 \ge y_2 + f_2 + \sum_{j=2}^{k+1} g_{j,2}$ and if some $g_{m,2} > 0$, then $s = s_1 + y_1 + y_2$, $b = b_1 + f_1 + f_2$ and $a_j = a_{j,1} + g_{j,1} + g_{j,2}$ for all $m+1 \leq j \leq k+1$. If $v_1 > y_2 + f_2 + \sum_{j=2}^{k+1} g_{j,2}$, then we will say that we stopped at the degree (d-1,1). Notice that in this case we have $s = s_1 + y_1 + y_2$, $b = b_1 + f_1 + f_2$ and $a_j = a_{j,1} + g_{j,1} + g_{j,2}$ for all j. Assume $v_2 = y_2 + f_2 + \sum_{j=2}^{k+1} g_{j,2}$. We degenerate E_1 to a general union E'_1 of all connected components of E_1 intersecting H, $s - s_1 - y_1 - s_2 - y_2$ (k+1,k+2)points, $b - b_1 - f_1 - b_2 - f_2$ (k,1)-points, $a_m - a_{m,1} - g_{m,1} - a_{m,2} - g_{m,2}$ m-points for all $2 \leq m \leq k+1$, and v_2 virtual schemes, y_2 of them obtained applying the Differential Horace Lemma with respect to the sequence $(1, \binom{n+k}{n-1} + n - 1)$ $1, \ldots, n$, f_2 of them with respect to the sequence $(1, \binom{n+k}{n-1} + 1, \ldots, n)$ and $g_{m,2}, 2 \le m \le k+2$ of them with respect to the sequence $(1, \binom{n+m-1}{n-1}, \ldots, n)$. Hence length $(Z' \cap H) = \binom{n+d-1}{n-1}$. Since $d-1 \ge a(n-1,k)$ we may apply the inductive assumption and get $h^1(H, \mathcal{I}_{E'_1 \cap H}(d-1)) = 0, i = 0, 1$. Hence $h^i(\mathbf{P}^n, \mathcal{I}_Z(d)) \leq h^i(\mathbf{P}^n, \mathcal{I}_{\operatorname{Res}_H(E'_1)}(d-2)), \ i = 0, 1.$ Let E_2 be the union of the unreduced components of $\operatorname{Res}_H(E'_1)$. $\operatorname{Res}_H(E'_1) \setminus E_2$ is a general union of x_2 general points of H, where x_2 is described in the following way. If $k \geq 3$, then $x_2 = a_{3,1} + a_{2,2}$. If k = 2, then $x_2 = a_{3,1} + a_{2,2} + b_1$. If k = 1, then $x_2 = a_{2,2} + y_1$. By Lemma 1 to check that $h^1(\mathbf{P}^n, \mathcal{I}_{E_1}(d-1)) = 0$ it is sufficient to prove that $h^1(\mathbf{P}^n, \mathcal{I}_{E_2}(d-2)) = 0$ and $h^0(\mathbf{P}^n, \mathcal{I}_{\operatorname{Res}_H(E_2)}(d-3)) \leq \epsilon + x_1$. And so on defining each time integers $s_i, b_i, a_{m,i}, y_i, f_i, g_{m,i}, i \ge 1$, and then the integers e_i, x_i until either we stopped at the degree d - i + 1 or at the degree (d-i, 1) or we cannot apply Lemma 3 because d-i-1 = b(n, k).

(b) Here we assume that we stopped at the degree (d - i + 1, 1). We assume $d - i \ge \max\{b(n, k), a(n - 1, k) + k + 2\}$. Even in this case we have defined the scheme E'_i , but now the inductive assumption and the inequality $d - i \ge b(n, k)$ only give $h^1(H, \mathcal{I}_{H \cap E'}(d - i)) = 0$. This is enough to prove $h^1(\mathbf{P}^n, \mathcal{I}_{E'_i}(d - i)) \le h^1(\mathbf{P}^n, \mathcal{I}_{\operatorname{Res}(E'_i)}(d - i - 1))$. Set $G_1 := \operatorname{Res}(E'_i)$ and define inductively $G_j, j \ge 2$, by the formula $G_j := \operatorname{Res}_H(G_{j-1})$. Since each connected component of E'_i intersects H, we have $G_{k+2} = 0$. The inequality $d - i \ge a(n - 1, k) + k + 2$ gives $h^1(H, \mathcal{I}_{G_j \cap H}(d - i - j)) = 0$, for all j > 0. Hence $h^1(\mathbf{P}^n, \mathcal{I}_{E'_i}(d - i))$.

(c) Here we assume that we stopped at the degree d - i + 1. We assume $d - i \ge a(n - 1, k) + k + 2$. Here we are in the situation of part (b), but E'_i has no virtual scheme and hence we do not need to use Lemma 2.

(d) Here we assume $d \gg 0$ and we prove that we must stop either at the degree d - i + 1 or at the degree (d - i + 1, 1) for some *i* such that $d - i \ge 1$

 $\max\{b(n,k), a(n-1,k)+k+2\}. \text{ We also assume } d-i \geq k+3. \text{ If } E_i \text{ is defined, then } \binom{d-i+1}{n} - \operatorname{length}(E_i) = \epsilon + \sum_{j=1}^i x_j. \text{ Hence } \epsilon + \sum_{j=1}^i \leq \binom{d-i+1}{n}.$ Between the degree d and the degree d-i+k+3 we inserted in H at least $\lceil \binom{n+d}{n} - \binom{n+d-i+k+3}{n} \rceil / \binom{n+k}{n} + n \rceil$ connected components (virtual or not) and each non-virtual component contributes to the integer $\sum_{j=1}^i x_j$. Since $v_j \leq \binom{n+k}{n} + n-2$ for all j, we get $\sum_{j=1}^i x_j \geq \lceil \binom{n+d}{n} - \binom{n+d-i+k+3}{n} \rceil / \binom{n+k}{n} + n-2$. For $i \gg 0$ we get $\sum_{j=1}^i x_j \gg \binom{d-i+1}{n}$; more precisely, there is an integer $c_{n,k}$ such that if $i \geq c_{n,k}$, then $\sum_{j=1}^i x_j > \binom{n+d-i+1}{n}$, contradiction.

(e) Here we will check all the h^0 -inequalities. In the case $\epsilon \geq 0$ we got inequalities of the form $h^0(\mathbf{P}^n, \mathcal{I}_{\operatorname{Res}(E'_y)}(d-y-1)) \leq \epsilon + \sum_{j=1}^{y-1} x_j$. In part (f) (case $\epsilon \leq 0$) we also need inequalities of type $h^0(\mathbf{P}^n, \mathcal{I}_{E_y}(d-y)) \leq \sum_{j=1}^{y-1} x_j$. To check all of them we degenerate several times $\operatorname{Res}(E'_y)$ or E_y , until we arrive at a stopping degree, either of type (x, 1) or just a stopping degree x. At each time we apply Lemma 1 and hence we get two new h^0 -inequalities intead of the old one. We conclude as in part (d), because we only need $\sum_{j=1}^{x} x_j > \binom{n+x}{n}$ and this is true for $d \gg 0$ and depending only from d, not from y: we may choose the same x for all y coming from a fixed d.

(f) Here we assume $\epsilon \leq 0$. We just get the same inequalities, except we omit the term ϵ in these inequalities.

References

- J. Alexander and A. Hirschowitz, An asymptotic vanishing theorem for generic unions of multiple points, Invent. Math. 140 (2000), no. 2, 303–325.
- [2] A. Bernardi, M. V. Catalisano, A. Gimigliano and M. Idà, Osculating varieties of Veronese varieties and their higher secant varieties, Canadian J. Math. 59 (2007), no. 3, 488–502.
- [3] M. V. Catalisano, A. V. Geramita and A. Gimigliano, On the secant variety to the tangential varieties of a Veronesean, Proc. Amer. Math. Soc. 130 (2001), no. 4, 975– 985.
- [4] . L. Chiantini and C. Ciliberto, Weakly defective varieties, Trans. Amer. Math. Soc. 354 (2002), no. 1, 151–178.
- [5] C. Ciliberto and R. Miranda, Interpolations on curvilinear schemes, J. Algebra 203 (1998), no. 2, 677-678.

Received: October 23, 2007