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Abstract. Fix Integers n > 0, k > 0. Here we prove the existence on an
integer d(n, k) with the following property. Fix any integer d ≥ d(n, k). Let
Ok,n,d ⊂ PN , N :=

(
n+d

n

) − 1, be the order k osculating variety of the order
d Veronese embedding of Pn. Then all the secant varieties of Ok,n,d have the
expected dimension.
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1. Introduction

We work over an algebraically closed field K with char(K) = 0. Fix integers
n > 0 and d > k > 0. Let Vn,d ⊆ PN , N :=

(
n+d

n

) − 1, be the order d

Veronese embedding of Pn and Ok,n,d ⊆ PN the order k osculating variety of
Vn,d in PN , i.e. the closure in PN of the union of the general k-osculating

linear spaces of Vn,d. dim(Ok,n,d) = min{N,
(

n+k
n

)
+ n − 1}, i.e. Ok,n,d has

the expected dimension ([2], Lemma 3.3). For any integral m-dimensional
projective subvariety X ⊆ PN and any integer s ≥ 1 let Ss−1(X) denote the
closure in PN of all (s − 1)-dimensional linear subspaces of PN spanned by s
points of X. Ss−1(X) is an integral variety and dim(Ss−1(X)) ≤ min{N, s(m+
1)−1}. If dim(Ss−1(X)) = min{N, s(m+1)−1}, then we will say that Ss−1(X)
has the expected dimension. X is said to be ordinary if all its secant varieties
have the expected dimension. A. Bernardi, M. V. Catalisano, A.V. Geramita
and A. Gimigliano studied in [2] the dimension of the secant varieties of Ok,n,d.

1The author was partially supported by MUR and GNSAGA of INdAM (Italy).
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To prove their results they introduced the following zero-dimensional schemes.
Fix P ∈ Pn and a line D ⊆ Pn such that P ∈ D. For any integer m > 0 let
mP denote the infinitesimal neighborhood of order m− 1 of P in Pn, i.e. the
closed subscheme of Pn with (IP )m has its ideal sheaf. Hence (mP )red = {P}
and length(mP ) =

(
n+m−1

n

)
. mP will be called an m-point of Pn. Fix a

homogeneous coordinate system x0, . . . , xn such that P = (1; 0; . . . ; 0) and
D = {x2 = · · · = xn = 0}. Write zi := xi/x0, 1 ≤ i ≤ n, and use z1, . . . , zn

as affine coordinates around P . Let Z(n, k; P, D) be the closed subscheme
defined by the equations given by all monomials in the variables z1, . . . , zn

of degree at least k + 2 and by all monomials of degree k + 1, except the n
monomials zk

1zi, 1 ≤ i ≤ n. Hence (k + 1)P ⊂ Z(n, k; P, D) ⊆ (k + 2)P ,
length(Z(n, k; P, D)) =

(
n+k

n

)
+ n and Z(n, k; P, D) = (k + 2)P if and only if

n = 1. We will say that Z(n, k; P, D) is a (k+1,k+2)-point of Pn. Notice that
Z(n, k; P, D) only depends from n, k, P and the tangent vector at P determined
by D, but not from the coordinate system, because if instead of z1 we write
z1 +M with M a power series in z1, . . . , zn with no term of degree ≤ 1, then all
terms (z1+M)kzi−zk

1zi, 1 ≤ i ≤ n, are zero modulo the ideal sheaf of (k+2)P .
We will say that Z(n, k; P, D) is a (k +1, k+2)-point of Pn. Let Z(n, k; P, D)′

be the closed subscheme defined by the equations given by all monomial in the
variables z1, . . . , zn of degree at least k+2 and by all monomials of degree k+1,
except the monomial zk+1

1 . The scheme Z(n, k; P, D)′ depends only from n, k, P
and the tangent dircetion ot P determined by D, length(Z(n, k; P, D)′) =(

n+k
n

)
+ 1, and (k + 1)P ⊂ Z(n, k; P, D)′ ⊆ Z(n, k; P, D). We will say that

Z(n, k; P, D)′ is a (k+1;1)-point of Pn. Now we list our main results.

Theorem 1. For all positive integers n, k there is a positive integer a(n, k)
with the following properties. Fix non-negative integers s, d, b, am, 2 ≤ m ≤
k + 1, such that d ≥ a(n, k). Let Z ⊂ Pn be a general union of s (k+1,k+2)-
points, b (k;1)-points, and am m-points of Pn for all 2 ≤ m ≤ k + 1. Then
either h1(Pn, IZ(d)) = 0 (case length(Z) ≤ (

n+d
n

)
) or h0(Pn, IZ(d)) = 0 (case

length(Z) ≥ (
n+d

n

)
).

Corollary 1. For all positive integers n, k there is a positive integer d(n, k)
with the following properties. Fix integers s > 0 and d ≥ d(n, k). Let Z ⊂ Pn

be a general union of s (k+1,k+2)-points of P2. Then either h1(P2, IZ(d)) = 0
(case s

(
n+k

n

)
+ sn ≤ (

n+d
n

)
) or h0(P2, IZ(d)) = 0 (case s

(
n+k

n

)
+ sn ≥ (

n+d
n

)
),

i.e. Ok,n,d is ordinary. We may take d(2, k) = (k + 2)4.

The “ i.e. ” part (i.e. that h0(Pn, IZ(d)) = 0 if and only if dim(Ss−1(Ok,n,d)) =(
n+d

n

) − 1 and that h1(Pn, IZ(d)) = 0 if and only if dim(Ss−1(Ok,n,d)) =

s(
(

n+k
n

)
+ n) − 1) is proved in [2], §3. The case n = 2 of Corollary 1 is not

covered by Theorem 1. We will directly prove it. However, to prove Corollary
1 for an integer n ≥ 3 we will use Theorem 1 for the integer n′ := n − 1.
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The case n = 2 of the following result seems to be rather strong (see sec-
tion 3 for its proof and for a less interesting result with an upper bound for
h1(Pn, IZ(d))).

Proposition 1. Fix positive integers n, k, d, s. Let Z ⊂ Pn (resp. W ⊂
Pn) be a general union of s (k + 1, k + 2)-points (resp. (k + 1)-points). If
h0(Pn, IW (d)) ≤ s, then h0(Pn, IZ(d)) = 0, i.e. dim(Ss−1(Ok,n,d)) =

(
n+d

n

)−1.

Question 1. Fix an integer k ≥ 2. Is there an integer d(k) not depending
from n such that either h1(Pn, IZ(d)) = 0 (case s(k + 2)(k + 1)/2 + 2s ≤
(d + 2)(d + 1)/2) or h0(Pn, IZ(d)) = 0 for all integers n ≥ 2, k > 0 and
d ≥ d(k), where Z is a general union of s (k+1,k+2)-points of Pn? Is it
possible to take d(k) = 3(k + 1)?

It should be easy to disprove or get numerical evidence for the very optimistic
bound d(k) = 3(k + 1). The huge difference between 3(k + 1) and (k + 2)4

explains why we did not tried to get a little better bound for d(2, k).

2. Preliminary results

For any smooth and connected variety A, any P ∈ A and any integer m > 0
let {mP, A} denote the closed subscheme of A with (IP,A)m as its ideal sheaf.
Fix an effective Cartier divisor D of A. For any closed subscheme Z of A let
ResD(Z) denote the residual of Z with respect to D, i.e. the closed subscheme
of A with IZ : IA as its ideal sheaf. For any L ∈ Pic(A) we have an exact
sequence

0 → IResD(Z),A
⊗ L(−D) → IZ,A ⊗ L → IZ∩D,D ⊗ (L|D) → 0 (1)

Notation 1. Fix a hyperplane H ⊂ Pn, P ∈ H and a zero-dimensional
scheme A ⊂ Pn such that Ared = {P}. Set A0 := A. Define inductively the
schemes Ai and Bi, i ≥ 1, by the formulas Ai := ResH(Ai−1) and Bi := Ai∩H .
For evey integer i ≥ 1, set ci := length(Bi−1). We will say that A has type
(c1, c2, . . . with respect to H . Since A is zero-dimensional and Ared ⊆ H , we
have ci = 0 for i 
 0, ci+1 ≤ ci for all i, and length(A) =

∑
i≥1 ci. Instead of a

sequence (c1, c2, . . . we will usually write a finite string (c1, . . . , cs) if cs+1 = 0,
i.e. if ci = 0 for all i > s.

Remark 1. Fix a hyperplane H ⊂ Pn, n ≥ 2, an integer k > 0, P ∈ H and
a line D ⊆ Pn such that P ∈ D. Set Z0 := Z(n, k; P, D) and W0 := Z0 ∩ H .
Define inductively the schemes Zi and Wi, i ≥ 1, by the formulas Zi :=
ResH(Zi−1) and Wi := Zi ∩ H . First assume D ⊆ H . We have W0 = Z(n −
1, k; P, D), Z1 = Z(n, k − 1; P, D)′, W1 = Z(n− 1, k − 1; P, D)′, Zi = (k − i)P
and Wi = {(k + 2 − i)P, H} for 2 ≤ i ≤ k + 1, and Zi = Wi = ∅ for all
i ≥ k+2. Now assume D � H . We have Wi = {(k+1− i)P, H} for 0 ≤ i ≤ k,
Wk+1 = {2P, H}, Wk+2 = {P}, Wi = ∅ for all i ≥ k +3, Zi = Z(n, k− i; P, D)
for 1 ≤ k, Zk+1 = 2P , Zk+2 = {P} and Zi = ∅ for all i ≥ k + 3. If n = 2
and D �= H , then Z(2, k; P, D) has type (c1, . . . with respect to H , where
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ci = k + 2 − i for 1 ≤ i ≤ k, ck+1 = 2, ck+2 = 1 and cj = 0 for all j ≥ k + 3.
Z(2, k; P, H) has type (c1, . . . with respect to H , where ci = k + 3 − i, for
i =, 2, ci = k + 2 − i for 3 ≤ i ≤ k + 1 and cj = 0 for all j ≥ k + 2. If D ⊆ H ,
then we will say that Z(n, k; P, D) is strongly supported by H . We will say
that a (k+1;1)-point Z(n, k; Q, R)′ is strongly supported by H if Q ∈ H and
D ⊆ H . Now we fix an integer m > 0. Notice that mP |H = {mP, H} and
ResH(mP ) = (m − 1)P , with the convention 0P = ∅.
Remark 2. Here we will explain three easy cases of the Differential Horace
Lemma ([1]). Take the set-up of Remark 1. Assume P ∈ D ⊆ H . Let
A ⊂ P2 be any zero-dimensional subscheme such that P /∈ Ared. To prove
h1(P2, IA∪Z(n,k;P,D)(d)) = 0 (resp. h0(Pn, IA∪Z(n,k;P,D)(d)) = 0), it is suffi-
cient to prove h1(H, IA∩H∪{P}(d)) = 0 and h1(Pn, IA∪B(d − 1)) = 0 (resp.
h0(H, IA∩H∪{P}(d)) = 0 and h0(Pn, IA∪B(d − 1)) = 0), where B is a virtual

scheme of type (c1, . . . with c1 = 1, c2 =
(

n+k
n−1

)
+ n − 1, c3 =

(
n+k−1

n−1

)
+ 1,

ci =
(

n+k+2−i
n−1

)
for 4 ≤ i ≤ k + 2 and cj = 0 for all j ≥ k + 3. Notice

ck+2 = n and ck+3 = 0. Roughly speaking, we insert in H first P , then
Z(n − 1, k; P, D), then Z(n − 1, k − 1; P, D)′ and then {(k + 1 − i)P, H} for
1 ≤ i ≤ k − 1. In this case we will say that we applied the Differential Ho-
race Lemma with respect to the sequence (1,

(
n+k
n−1

)
+ n − 1, . . . , n). Now we

consider Z(n, k − 1; P, D)′. We assume D ⊆ H . In this case we insert in H
first P , then Z(n − 1, k − 1; P, D)′ and then {(k − i)P, H} for 1 ≤ i ≤ k − 2.
In this case we will say that we applied the Differential Horace Lemma with
respect to the sequence (1,

(
n+k−1

n−1

)
+ 1, . . . , n). Now we fix an integer m ≥ 2.

Instead of mP we first insert in H the point P and then {(m + 1 − i)P, H}
for 1 ≤ i ≤ m + 2. In this case we will say that we applied the Differential
Horace Lemma with respect to the sequence (1,

(
n+m−1

n−1

)
, . . . , n).We may apply

the Differential Horace Lemma simultaneously with respect to several distinct
points of H .

Lemma 1. Fix integers d > 0, a ≥ 0, b ≥ 0, c > 0, a zero-dimensional
scheme E ⊂ Pn and a hyperplane H ⊂ Pn. Let G be the union of E and c
general points of H. Then:

(i) h0(Pn, IG(d)) ≤ a if and only if h0(Pn, IF (d)) ≤ a+c and h0(Pn, IResH(E)
(d−

1)) ≤ a.
(ii) h1(Pn, IG(d)) ≤ b if and only if h1(Pn, IF (d)) ≤ b and h0(Pn, IResH(E)(d−

1)) ≤ (
n+d

n

) − length(E) − c + b.

Proof. We will first check part (i). The “ only if ” part follows from the residual
exact sequence (1), because ResH(E) = ResH(G). Assume h0(Pn, IE(d)) ≤
a+c and h0(Pn, IResH(E)

(d−1)) ≤ a Let S ⊂ Pn be a general union of a points

of Pn. In particular we have S ∩ H = ∅, S ∩ Ered = ∅, h0(Pn, IE∪S(d)) ≤ c
and h0(Pn, IResH(E)∪S

(d − 1)) = 0. To check part (i) it is sufficient to prove

h0(Pn, IG∪S(d) = 0). Let ρ : H0(Pn, IE∪S(d)) → H0(H, IE∩H(d)) be the
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restriction map. Since h0(Pn, IResH(E)∪S
(d − 1)) = 0, ρ is injective. Hence

dim(Im(ρ)) ≤ c. The generality of G\ for fixed E ∪ S gives that no non-zero
element of Im(ρ) vanishes at all points of F , concluding the proof of part (i).
Since h0(Pn, IG(d))−h1(Pn, IG(d)) = length(E)+ c+

(
n+d

n

)
, parts (i) and (ii)

are equivalent (for suitable integers a, b).

3. The proofs

Proof of Proposition 1. Order the connected components of Z and of
W . Let Zi, 0 ≤ i ≤ s, be the union of the first i connected components
of Z and the last s − i connected components of W . It is sufficient to prove
h0(Pn, IZi

(d)) ≤ s−i for all i. By assumption this inequality is satisfied for i =
0. Hence it is sufficient to prove h0(Pn, IZi

(d)) ≤ max{0, h0(Pn, IZi−1
(d))−1}

for all 1 ≤ i ≤ s. Fix an integer i such that 1 ≤ i ≤ s. To prove the last
inequality we may assume h0(Pn, IZi−1

(d)) > 0. Let P denote the support of
the (s − i − 1)-th connected component of W . Let E denote the union of the
first i− 1 connected components of Z, the last s− i connected components of
W and a general scheme contained between (k + 1)P and (k + 2)P and with
length

(
n+k

n

)
+1, i.e. the minimal length among the schemes strictly containing

(k + 1)P . h0(Pn, IZi−1
(d)) > h0(Pn, IE(d)) ([4], Proposition 2.2). For general

P we may also assume that E and Zi have the same support. We cannot
claim E ⊂ Zi if k ≥ 2 and n ≥ 2, because, even moving the line through P
giving the corresponding connected component of Zi, Zi does not contain a
general enlargment of (k + 1)P by a length one scheme. Take again the set up
of the definition of Z(n, k; P, D) with the affine coordinates z1, . . . , zn. Since
we are in characteristic zero, the (k + 1)-powers Lk+1 of all linear forms in
z1, . . . , zn spans the set of all homogeneous degree k + 1 polynomials in the
variables z1, . . . , zn. Since h0(Pn, IZi−1

(d)) > h0(Pn, IE(d)), there is at least
one index j such that 1 ≤ j ≤ n and h0(Pn, IE(d)) = h0(Pn, IF (d)), where F
is the scheme obtained from Zi−1 taking instead of (k + 1)P the zero-set of all
monomials of degree ≥ k + 2 and the ones of degree k + 1 except zk+1

j . Take
D = {za = 0 for all a �= j}. With this choice of the line D we have F ⊂ Zi

and hence h0(Pn, IZi
(d) < h0(Pn, IZi−1

(d)).

The same proof gives the following result.

Proposition 2. Fix positive integers n, k, d, s. Let Z ⊂ Pn (resp. W ⊂
Pn) be a general union of s (k + 1, k + 2)-point (resp. (k + 1)-points). If
h0(Pn, IW (d)) ≥ s, then h1(Pn, IZ(d)) ≤ h1(Pn, IW (d)) + (n − 1)s.

Lemma 2. Fix integers d > k > 0, s ≥ 0, b ≥ 0, ai ≥ 0, 1 ≤ i ≤ k and e
such that 0 ≤ e ≤ k + 1, d ≥ (k + 2)3 and

(k + 2)s + (k + 1)b +
k∑

i=1

iai + e ≤ d + 1 (2)
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Then

(k + 1)s + (k − 1)b +
k∑

i=2

(i − 1)ai + e(k + 2) ≤ d (3)

Proof. Increasing if necessary a1 we may assume

(k + 2)s + (k + 1)b +
k∑

i=1

iai + e = d + 1 (4)

By (4) and (3) it is sufficient to prove that

s + 2b +
k∑

i=1

ai ≥ 1 + (k + 2)(k + 1) (5)

The last inequality is true because d ≥ (k +2)2(k +1)+1 and we assumed the
equality (4).

We won’t try to make explicit and small the integers a(n, k) and d(n, k) in
the statements of Theorem 1 and Corollary 1, because for fixed k we didn’t
get as d(n, k) a polynomial function of n. Hence we will not give an explicit
bound for the integer b(n, k) in the next lemma.

Lemma 3. For all integers n ≥ 2 and k > 0 there is an integer b(n, k) > 0
with the following property. Fix non-negative integers x, d, a, am, e, 2 ≤ m ≤
k + 1, such that e ≤ (

n+k
n−1

)
+ n − 2, d ≥ b(n, k) and

x(

(
n + k

n − 1

)
+ n − 1) + a(

(
n + k − 1

n − 1

)
+ 1) + (6)

+

k+1∑
m=2

am

(
n + m − 1

n − 1

)
+ e ≤

(
n + d − 1

n − 1

)

Then

x(

(
n + k − 1

n − 1

)
+ 1) + a

(
n + k − 2

n − 1

)
+ (7)

+

k+1∑
m=2

am

(
n + m − 2

n − 1

)
+ e(

(
n + k

n − 1

)
+ n − 1) ≤

(
n + d − 2

n − 1

)

Proof. Increasing if necessary a2 we may assume

x(

(
n + k

n − 1

)
+ n − 1) + a(

(
n + k − 1

n − 1

)
+ 1) + (8)

+

k+1∑
m=2

am

(
n + m − 1

n − 1

)
+ e ≥

(
n + d − 1

n − 1

)
− n + 2
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Under this additional assumption it is sufficient prove the following inequality

x(

(
n + k − 1

n − 2

)
+ n − 2) + a(

(
n + k − 2

n − 2

)
+ 1) +

k+1∑
m=2

am

(
n + m − 2

n − 2

)
(9)

≥ (

(
n + k

n − 1

)
+ n − 2)2 + n +

(
n + d − 2

n − 2

)
+ n − 2

Set e0 := (
(

n+k
n−1

)
+ n − 1)/(

(
n+k−1

n−1

)
+ 1), e1 := (

(
n+k−1

n−1

)
+ 1)/(

(
n+k−2

n−1

)
) and

em :=
(

n+m−1
n−1

)
/
(

n+m−2
n−1

)
= (n + m − 1)/(m − 1) for all 2 ≤ m ≤ k + 1. Hence

ei ≥ (n+k)/k for all i. Since
(

n+d−1
n−1

)
/
(

n+d−2
n−1

)
= (n+d−1)/d, we conclude.

Proof of Corollary 1 for n = 2. Fix a line H ⊂ P2. Set ε := (d +
2)(d + 1)/2 − s(k + 2)(k + 1)/2 + 2s. Increasing or decreasing the integer
s we see that (for a fixed degree d) it is sufficient to check all cases with
−(k2 + 3k)/2 ≤ ε ≤ (k2 + 3k)/2. From now on we will assume that these
inequalities are satisfied. Until part (e) we will also assume ε ≥ 0, i.e. we will
check that h1(P2, IZ(d)) = 0.

(a) Write u1 := �(d+1)/(k+2)� and v1 := d+1−u1(k+2). If s < u1+v1,
then we will say that we stopped at the degree d. Assume s ≥ u1 + v1. We
specialize Z to a general union Z ′ of s − u1 − v1 (k + 1, k + 2)-points, u1

(k + 1, k + 2)-points strongly supported by H and v1 virtual schemes obtained
applying Differential Horace Lemma with respect to the sequence (1, k+2, k+
1, k − 1, · · · , 2), i.e. applying Remark 2 to the scheme Z(2, k; P, H). Since
length(H ∩ Z ′) = (k + 2)u1 + v1 = d + 1 and H ∼= P1, hi(P2, IZ′(d)) =
hi(P2, IResH(Z′)(d)) by the Differential Horace Lemma. The virtual residue

Z1 := ResH(Z ′) intersects H in u1 connected schemes with length k +1 and v1

connected schemes with length k+2. Lemma 2 and our assumption on d gives
e1 := length(Z1∩H) ≤ d. Set u2 := �(d−e1)/(k+2)� and v2 := d−e1−(k+2)u2.
If u1 + v1 ≤ s < u1 + v1 + u2 + v2, then we will say that we stopped at
the degree d − 1. Assume s ≥ u1 + v1 + u2 + v2. We degenerate Z1 to a
general union Z ′

1 of s − u1 − v1 − u2 − v2 (k+1,k+2)-points, the connected
components of Z1 intersecting Z, u2 (k+1,k+2)-points strongly supported by
H and v2 virtual schemes obtained applying Differential Horace Lemma with
respect to the sequence (1, k + 2, k + 1, k − 1, · · · , 2). Set Z2 := ResH(Z ′

1) and
e2 := length(Z2 ∩H). Since d−1 ≥ (k +2)2(k +1), Lemma 2 gives e2 ≤ d−1.
Set u3 := �(d − 1 − e2)/(k + 2)� and v3 := d − 1 − e2 − (k + 2)u3. And so on,
up to the degree d− k− 1 defining each time the integers ui, vi, ei−1, unless we
stopped, say at the degree x, because

∑d−x−1
i=1 (ui + vi) ≤ s <

∑d−x
i=1 (ui + vi).

Fix an integer i such that Zi is defined. Notice that the supports of the
connected components of Z1 ∩H are general in H in the following very strong
sense: we may fix the support of all except except one prescribed in advance
and then take as the support of the choosen component a general point of
H . Since we are in characteristic zero, a general lemma say that Zi ∩ H (for
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general supports) imposes the maximal possible number of components of a
prescribed linear system Λ on H ([5]).

(b) Assume that we never stopped until the degree d − k − 1. Zk+1

contains u1 reduced connected components, all of them contained in H . Let
Ek+1 be the union of the unreduced components of Zk+1. By Remark 1 to prove
h1(P2, IZk+1

(d−k−1)) = 0 and hence to prove h1(P2, IZ(d)) = 0, it is sufficient
to prove h1(P2, IEk+1

(d − k − 1)) = 0 and h0(P2, IResH(Ek+1)
(d − k − 2)) ≤ ε.

Here we will check the h1-vanishing leaving the h0-inequality (and all the other
h0-inequalities which will soon appear) to part (d). Set ek+1 := length(Ek+1 ∩
H), uk+2 := �(d− k− ek+1)/(k +2)� and vk+2 := d− k− ek+1 − (k +2)uk+2. If

s <
∑k+2

i=1 (ui + vi), then we will say that we stopped at the degree d − k − 1.

Now assume s ≥ ∑k+2
i=1 (ui + vi). We degenerate Ek+1 to a general union

E ′
k+1 of s−∑k+2

i=1 (ui + vi) (k+1,k+2)-points, all the connected components of
Ek+1 intersecting H , uk+2 (k+1,k+2)-points strongly supported by H and v2

virtual schemes obtained applying Differential Horace Lemma with respect to
the sequence (1, k + 2, k + 1, k − 1, · · · , 2). Hence length(E′

k+1 ∩ H) = d − k.
ResH(E ′

k+2) contains u2 reduced connected components, all of them contained
in H . Let Ek+2 denote the union of the unreduced connected components of
ResH(E ′

k+2). By Remark 1 to prove h1(P2, IEk+1
(d−k−1)) = 0 it is sufficient to

prove h1(P2, IEk+2
(d−k−2)) = 0 and h0(P2, IResH(Ek+2)

(d−k−3)) ≤ ε+u1.

And so on, defining each time the integers ui, vi, ei−1 and the schemes Ei,

E ′
i, unless we stopped, say at the degree x, because

∑d−x−1
i=1 (ui + vi) ≤ s <∑d−x

i=1 (ui + vi). We need to check h1(P2, IEi
(d − i)) = 0 for at least one index

i, but we need to prove h0(P2, IResH(Ei)
(d − i − 1)) ≤ ε +

∑i−k
j=1 uj for all

integers i for which Ei is defined. Since at each step we applied Lemma 2,
Ei is defined only for i ≤ d − 1 − (k + 2)3. Here we want to check that we
stopped before arriving at the degree d−1−(k+2)3, i.e. we want to check that

s <
∑d−1−(k+2)(k+1)

i=1 (ui + vi). For each i ≥ k = 1 (resp. 1 ≤ i ≤ k +1) we have

(d+2−i)(d+1−i)/2−ε = length(Ei)+
∑i−k−1

j=1 uj (resp. (d+2−i)(d+1−i)/2−
ε = length(Zi)). Notice that s ≥ ∑i

j=1(uj+vj) if Ei or Zi are defined, vj ≤ k+1

for all j, and s((k+2)(k+1)/2+2) = (d+2)(d+1)/2−ε. Hence if Ei or Zi are

defined, then
∑i

j=1 uj ≥ (k +1)i+((d+2)(d+1)/2− ε)/((k+2)(k +1)/2+2).

Thus if Ed−1−(k+2)3 is defined, then length(Ed−1−(k+2)3−k−1 ≤ (d−k−1)(k+1)−
((d+2)(d+1)/2− ε)/((k+2)(k +1)/2+2) < 0 (just use that |ε| ≤ (k2 +3k)/2
and the assumption d ≥ (k + 2)4), contradiction.

(c) Now assume that we stopped at the degree x. Hence we defined
either Zd−x+1 (case x ≥ d − k) or Ed−x−1 (case x ≤ d − k − 1). Call Fd−x−1

the scheme we defined. We defined the integers ed−x−1, ud−x and vd−x and∑d−x−1
i=1 (ui+vi) ≤ s <

∑d−x
i=1 (ui+vi). Write a := min{ud−x, s−

∑d−x−1
i=1 (ui+vi)}

and b := s − a − ∑d−x−1
i=1 (ui + vi). We degenerate Fd−x−1 to a general union

G of the connected components of Fd−x−1 intersecting H , a (k+1,k+2)-points
strongly supported by H and virtual schemes obtained applying Differential
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Horace Lemma with respect to the sequence (1, k + 2, k + 1, k − 1, · · · , 2). We
apply k + 1 times the Horace Differential Lemma and reduce to the statement
that the empty set have good coomology. We may apply Lemma 2 at the first
step because x ≥ (k + 2)3. We do not need to apply it in the next k steps,
because neither in the first step nor in the following ones we insert any new
virtual scheme of type (1, k +2, k +1, k− 1, · · · , 2) (it is taking the residual of
one of them which compels us to use Lemma 2 with e �= 0). Call β the number
of steps we used in part (c) to arrive to Eβ∅. If i ≥ β, then Fi = ResH(Fi) = ∅
and the h0-inequalities are satisfied (see part (c)). If i < β after at most β − i

steps every h0-inequality coming from h0(P2, IResH(Fi)
(d−i−1)) ≤ ε+

∑i−k
j=1 uj

(or a similar one for Fi) is proved as in part (c).
(d) At each step in part (b) we got a new h0-inequality. We need to show

that we may control simultaneously all these inequalities. All these inequalities
are of the form h0(P2, IResH(Ei)

(d−k− i)) ≤ ε+
∑i

j=1 uj . Let Fi be the union

of all unreduced components of ResH(Ei). ResH(Ei)\Fi is a general union

of xi ≥ 0 points of H . Hence h0(P2, IResH(Ei)
(d − k − i)) ≤ ε +

∑i
j=1 uj if

h0(P2, IFi
(d−k− i)) ≤ ε+

∑i
j=1 uj +xi and h0(P2, IResH(Fi)

(d−k− i−1)) ≤
ε +

∑i
j=1 uj. We iterate the same game for each of these inequalities. We

specialize Fi to F ′
i (using also the Differential Horace Lemma) in such a way

that length(F ′
i ∩ H) = d − k − i + 1 and applyxi is the number of 2-points of

Ei with support on H . At the next step using F ′
i the new xi+1 is the number

of 3-points of Ei with support on H .
(e) Here we assume −(k2 + 3k)/2 ≤ ε ≤ 0. We take ui, vi.ei−1, Zi, Z

′
i as in

part (a) and Ek+1 as in part (b). Now we need to check h0(P2, IEk+1
(d − k −

1)) = 0 and h0(P2, IResH(Ek+1)
(d − k − 1)) = 0. Then we continue as in part

(d), except that there is no h1-vanishing and in all h0-inequalities listed to be
checked the term “ ε ” does not appear. The other h0-inequalities appearing
for ε ≤ 0 are of the form h0(P2, IEi

(d − k − i)) ≤ ∑i−1
j=1 uj and are handled in

the same way.

Proof of Theorem 1. Set ε := ε(n, k, d, s, b, a1, . . . , ak+1) := s(
(

n+k
n

)
+

n) + b(
(

n+k−1
n

)
+ 1) +

∑k+1
i=2

(
n+i
n

) − (
n+d

n

)
. Hence ε = length(Z) − (

n+d
n

)
.

Fix a hyperplane H ⊂ Pn. Since Theorem 1 is trivially true when n = 1
taking a(1, k) = 1, we may assume that the result is true for n′ := n − 1
and in particular there is a finite integer a(n − 1, k). Fix an integer d ≥
max{a(k−1, n)+2k +2, b(n, k)+2k+2}, where b(n, k) is any positive integer
satisfying the thesis of Lemma 3. Later, we will impose d 
 0 we no explict
allowable integer d. Take Z as in the statement of Theorem 1. In parts (a),
(b), (c), (d) and (e) we will assume ε ≥ 0, i.e. we these parts we will check
that h1(Pn, IZ(d)) = 0.

(a) Let s1 be the maximal non-negative integer such that s1(
(

n+k
n−1

)
+ n −

1) ≤ (
n+d−1

n−1

)
. Let b1 be the maximal non-negative integer ≤ b such that
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b1(
(

n+k
n−1

)
+1) ≤ (

n+d−1
n−1

)−s1(
(

n+k
n−1

)
+n−1). We define the integers am,1, 1 ≤ m ≤

k + 1, by decreasing induction on m. Let ak+1,1 be the maximal non-negative

integer ≤ ak+1 such that ak+1,1

(
n+k
n−1

) ≤ (
n+d−1

n−1

)−s1(
(

n+k
n−1

)
+n−1)−b1(

(
n+k
n−1

)
+

1). Assume defined the integers aj,1 for k + 2 ≥ j ≥ m for some integer
m ≥ 3. Let am−1,1 be the maximal non-negative integer ≤ am−1 such that

am−1,1

(
n+m−2

n−1

) ≤ (
n+d−1

n−1

)−s1(
(

n+k
n−1

)
+n−1)−b1(

(
n+k
n−1

)
+1)−∑k+1

j=m aj,1

(
n+j−1
n−1

)
.

Set v1 :=
(

n+d−1
n−1

) − s1(
(

n+k
n−1

)
+ n − 1) − b1(

(
n+k
n−1

)
+ 1) − ∑k+1

j=2 aj,1

(
n+j−1
n−1

)
. If

v1 < s − s1 + b − b1 +
∑k+2

j=2(aj − aj,1), then we will say that we stopped

at the degree d − 1. Assume v1 ≥ s − s1 + b − b1 +
∑k+2

j=2(aj − aj,1). Set

y1 := min{v1, s − s1}, f1 := min{b − b1, v1 − y1} and gk+1,1 := min{ak+1 −
ak+1,1, v1 − e1 − f1}. Define by decreasing induction the integers gj,1 for all

k ≥ j ≥ 2 in a similar way. Hence v1 ≥ y1 +f1 +
∑k+1

j=2 gj,1 and if some gj,1 > 0,
then s = s1 + y1, b = b1 + f1 and aj = aj,1 + gj,1 for all m + 1 ≤ j ≤ k + 1. If

v1 > y1 + f1 +
∑k+1

j=2 gj,1, then we will say that we stopped at the degree (d, 1).
Notice that in this case we have s = s1 + y1, b = b1 + f1 and aj = aj,1 + gj,1 for

all j. Assume v1 = e1 +f1 +
∑k+1

j=2 gj,1. We degenerate Z ′ to a general union of

s−s1−y1 (k+1,k+2)-points, b−b1−f1 (k,1)-points, am−am,1−gm,1 m-points
for all 2 ≤ m ≤ k + 1, and v1 virtual schemes, y1 of them obtained applying
the Differential Horace Lemma (i.e. Remark 2) with respect to the sequence
(1,

(
n+k
n−1

)
+ n − 1, . . . , n), f1 of them with respect to the sequence (1,

(
n+k
n−1

)
+

1, . . . , n) and gm,1, 2 ≤ m ≤ k + 2, of them with respect to the sequence

(1,
(

n+m−1
n−1

)
, . . . , n). Hence length(Z ′ ∩ H) =

(
n+d−1

n−1

)
. Since d ≥ a(n − 1, k)

we may apply the inductive assumption and get h1(H, IZ′∩H(d)) = 0, i = 0, 1.
Hence hi(Pn, IZ(d)) ≤ hi(Pn, IResH(Z′)(d − 1)), i = 0, 1. Let E1 be the union

of the unreduced components of ResH(Z ′). ResH(Z ′)\H is a general union of
a2,1 points of H . In this case we will write x1 := a2,1. By Lemma 1 to prove
h1(Pn, IResH(Z′)(d−1)) = 0 it is sufficient to prove h1(Pn, IE1(d−1)) = 0 and

h0(Pn, IResH(E1)
(d−1)) ≤ ε. Here we will only check the h1-vanishing, leaving

this h0-inequality and all the h0-inequalities which will soon arrive to steps (d)
and (e). Set e1 := length(E1∩H). Lemma 3 and the assumption d ≥ b(n, k)++
gives e1 + x1 ≤

(
n+d−2

n−1

)
. Let s2 be the maximal non-negative integer ≤ s − s1

such that s2(
(

n+k
n−1

)
+n−1) ≤ (

n+d−2
n−1

)−e1. Let b2 be the maximal non-negative

integer ≤ b − b1 such that b2(
(

n+k
n−1

)
+ 1) ≤ (

n+d−2
n−1

) − s2(
(

n+k
n−1

)
+ n − 1) − e1.

We define the integers am,2, 1 ≤ m ≤ k + 1, by decreasing induction on
m. Let ak+1,2 be the maximal non-negative integer ≤ ak+1 − ak+1,1 such that

ak+1,2

(
n+k
n−1

) ≤ (
n+d−2

n−1

)− s2(
(

n+k
n−1

)
+n−1)− b2(

(
n+k
n−1

)
+1)− e1. Assume defined

the integers aj,2 for k + 2 ≥ j ≥ m for some integer m ≥ 3 let am−1,2 be
the maximal non-negative integer ≤ am−1 − am−1,1 such that am−1,2

(
n+m−2

n−1

) ≤(
n+d−1

n−1

) − s2(
(

n+k
n−1

)
+ n − 1) − b2(

(
n+k
n−1

)
+ 1) − ∑k+1

j=m aj,2

(
n+j−1
n−1

) − e1. Set

v2 :=
(

n+d−1
n−1

) − e1 − s2(
(

n+k
n−1

)
+ n − 1) − b2(

(
n+k
n−1

)
+ 1) − ∑k+1

j=2 aj,2

(
n+j−1
n−1

)
. If
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v2 < (s−s1−s2)+(b−b1−b2)+
∑k+2

j=2(aj−aj,1−aj,2), then we will say that we

stopped at the degree d−2. Assume v2 ≥ (s−s1−s2)+(b−b1−b2)+
∑k+2

j=2(aj−
aj,1 − aj,2). Set y2 := min{v2, s − s1 − s2}, f2 := min{b− b1 − b2, v2 − y2} and
gk+1,2 := min{ak+1 − ak+1,1, v2 − y2 − f2}. Define by decreasing induction the

integers gj,2 for all k ≥ j ≥ 2 in a similar way. Hence v2 ≥ y2+f2+
∑k+1

j=2 gj,2 and
if some gm,2 > 0, then s = s1 +y1 +y2, b = b1 +f1 +f2 and aj = aj,1 +gj,1 +gj,2

for all m + 1 ≤ j ≤ k + 1. If v1 > y2 + f2 +
∑k+1

j=2 gj,2, then we will say

that we stopped at the degree (d − 1, 1). Notice that in this case we have
s = s1 + y1 + y2, b = b1 + f1 + f2 and aj = aj,1 + gj,1 + gj,2 for all j. Assume

v2 = y2 + f2 +
∑k+1

j=2 gj,2. We degenerate E1 to a general union E ′
1 of all

connected components of E1 intersecting H , s − s1 − y1 − s2 − y2 (k+1,k+2)-
points, b− b1 −f1− b2 −f2 (k,1)-points, am−am,1 −gm,1−am,2−gm,2 m-points
for all 2 ≤ m ≤ k + 1, and v2 virtual schemes, y2 of them obtained applying
the Differential Horace Lemma with respect to the sequence (1,

(
n+k
n−1

)
+ n −

1, . . . , n), f2 of them with respect to the sequence (1,
(

n+k
n−1

)
+ 1, . . . , n) and

gm,2, 2 ≤ m ≤ k + 2 of them with respect to the sequence (1,
(

n+m−1
n−1

)
, . . . , n).

Hence length(Z ′ ∩ H) =
(

n+d−1
n−1

)
. Since d − 1 ≥ a(n − 1, k) we may apply

the inductive assumption and get h1(H, IE′
1∩H(d − 1)) = 0, i = 0, 1. Hence

hi(Pn, IZ(d)) ≤ hi(Pn, IResH(E′
1)

(d − 2)), i = 0, 1. Let E2 be the union of

the unreduced components of ResH(E ′
1). ResH(E ′

1)\E2 is a general union of
x2 general points of H , where x2 is described in the following way. If k ≥ 3,
then x2 = a3,1 + a2,2. If k = 2, then x2 = a3,1 + a2,2 + b1. If k = 1, then
x2 = a2,2 +y1. By Lemma 1 to check that h1(Pn, IE1(d−1)) = 0 it is sufficient
to prove that h1(Pn, IE2(d − 2)) = 0 and h0(Pn, IResH(E2)

(d − 3)) ≤ ε + x1.

And so on defining each time integers si, bi, am,i, yi, fi, gm,i, i ≥ 1, and then the
integers ei, xi until either we stopped at the degree d − i + 1 or at the degree
(d − i, 1) or we cannot apply Lemma 3 because d − i − 1 = b(n, k).

(b) Here we assume that we stopped at the degree (d − i + 1, 1). We
assume d − i ≥ max{b(n, k), a(n − 1, k) + k + 2}. Even in this case we have
defined the scheme E ′

i, but now the inductive assumption and the inequality
d − i ≥ b(n, k) only give h1(H, IH∩E′(d − i)) = 0. This is enough to prove
h1(Pn, IE′

i
(d − i)) ≤ h1(Pn, IRes(E′

i)
(d − i − 1)). Set G1 := Res(E′

i) and

define inductively Gj , j ≥ 2, by the formula Gj := ResH(Gj−1). Since each
connected component of E ′

i intersects H , we have Gk+2 = 0. The inequality
d − i ≥ a(n − 1, k) + k + 2 gives h1(H, IGj∩H(d − i − j)) = 0, for all j > 0.
Hence h1(Pn, IE′

i
(d − i)).

(c) Here we assume that we stopped at the degree d − i + 1. We assume
d − i ≥ a(n − 1, k) + k + 2. Here we are in the situation of part (b), but E ′

i

has no virtual scheme and hence we do not need to use Lemma 2.
(d) Here we assume d 
 0 and we prove that we must stop either at the

degree d − i + 1 or at the degree (d − i + 1, 1) for some i such that d − i ≥
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max{b(n, k), a(n − 1, k) + k + 2}. We also assume d − i ≥ k + 3. If Ei is

defined, then
(

d−i+1
n

) − length(Ei) = ε +
∑i

j=1 xj . Hence ε +
∑i

j01 ≤ (
d−i+1

n

)
.

Between the degree d and the degree d − i + k + 3 we inserted in H at least
�((n+d

n

) − (
n+d−i+k+3

n

)
)/(

(
n+k

n

)
+ n)� connected components (virtual or not)

and each non-virtual component contributes to the integer
∑i

j=1 xj . Since

vj ≤
(

n+k
n

)
+ n− 2 for all j, we get

∑i
j=1 xj ≥ �((n+d

n

)− (
n+d−i+k+3

n

)
)/(

(
n+k

n

)
+

n)�− (d− i+k +2)(
(

n+k
n

)
+n−2). For i 
 0 we get

∑i
j=1 xj 


(
d−i+1

n

)
; more

precisely, there is an integer cn,k such that if i ≥ cn,k, then
∑i

j=1 xj >
(

n+d−i+1
n

)
,

contradiction.
(e) Here we will check all the h0-inequalities. In the case ε ≥ 0 we got

inequalities of the form h0(Pn, IRes(E′
y)(d− y − 1)) ≤ ε +

∑y−1
j=1 xj . In part (f)

(case ε ≤ 0) we also need inequalities of type h0(Pn, IEy(d − y)) ≤ ∑y−1
j=1 xj .

To check all of them we degenerate several times Res(E′
y) or Ey, until we arrive

at a stopping degree, either of type (x, 1) or just a stopping degree x. At each
time we apply Lemma 1 and hence we get two new h0-inequalities intead of the
old one. We conclude as in part (d), because we only need

∑x
j=1 xj >

(
n+x

n

)
and this is true for d 
 0 and depending only from d, not from y: we may
choose the same x for all y coming from a fixed d.

(f) Here we assume ε ≤ 0. We just get the same inequalities, except we
omit the term ε in these inequalities.
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