Arithmetic Neighbourhoods of Numbers

Apoloniusz Tyszka

Technical Faculty, Hugo Kollátaj University
Balicka 116B, 30-149 Kraków, Poland
rttyszka@cyf-kr.edu.pl

Abstract

Let \(K \) be a ring and let \(A \) be a subset of \(K \). We say that a map \(f : A \rightarrow K \) is arithmetic if it satisfies the following conditions: if \(1 \in A \) then \(f(1) = 1 \), if \(a, b \in A \) and \(a + b \in A \) then \(f(a + b) = f(a) + f(b) \), if \(a, b \in A \) and \(a \cdot b \in A \) then \(f(a \cdot b) = f(a) \cdot f(b) \). We call an element \(r \in K \) arithmetically fixed if there is a finite set \(A \subseteq K \) (an arithmetic neighbourhood of \(r \) inside \(K \)) with \(r \in A \) such that each arithmetic map \(f : A \rightarrow K \) fixes \(r \), i.e. \(f(r) = r \). We prove: for infinitely many integers \(r \) for some arithmetic neighbourhood of \(r \) inside \(\mathbb{Z} \) this neighbourhood is a neighbourhood of \(r \) inside \(\mathbb{R} \) and is not a neighbourhood of \(r \) inside \(\mathbb{Z}[\sqrt{-1}] \); for infinitely many integers \(r \) for some arithmetic neighbourhood of \(r \) inside \(\mathbb{Z} \) this neighbourhood is not a neighbourhood of \(r \) inside \(\mathbb{Q} \); if \(K = \mathbb{Q}(\sqrt{5}) \) or \(K = \mathbb{Q}(\sqrt{33}) \), then for infinitely many rational numbers \(r \) for some arithmetic neighbourhood of \(r \) inside \(\mathbb{Q} \) this neighbourhood is not a neighbourhood of \(r \) inside \(K \); for each \(n \in (\mathbb{Z}\cap[3, \infty))\backslash\{2^2, 2^3, 2^4, \ldots\} \) there exists a finite set \(J(n) \subseteq \mathbb{Q} \) such that \(J(n) \) is a neighbourhood of \(n \) inside \(\mathbb{R} \) and \(J(n) \) is not a neighbourhood of \(n \) inside \(\mathbb{C} \).

Mathematics Subject Classification: 12E99, 12L12, 11D99

Keywords: Bachet’s equation, Mordell’s equation, integer (rational) solutions of the equation \(x^3 = y^2 + 2 \), integer solutions of the equation \(x^2 + y^2 + 1 = xyz \), rational solutions of the equation \(x^3 = y^2 + 432 \)

Let \(K \) be a ring and let \(A \) be a subset of \(K \). We say that a map \(f : A \rightarrow K \) is arithmetic if it satisfies the following conditions:

1. If \(1 \in A \) then \(f(1) = 1 \),
2. If \(a, b \in A \) and \(a + b \in A \) then \(f(a + b) = f(a) + f(b) \),
3. If \(a, b \in A \) and \(a \cdot b \in A \) then \(f(a \cdot b) = f(a) \cdot f(b) \).

We call an element \(r \in K \) arithmetically fixed if there is a finite set \(A \subseteq K \) (an arithmetic neighbourhood of \(r \) inside \(K \)) with \(r \in A \) such that each arithmetic
map \(f : A \rightarrow K \) fixes \(r \), i.e. \(f(r) = r \). All previous articles on arithmetic neighbourhoods ([15], [5], [16]) dealt with a description of a situation where for an element in a field there exists an arithmetic neighbourhood. If \(K \) is a field, then any \(r \in K \) is arithmetically fixed if and only if \(\{ r \} \) is existentially first-order definable in the language of rings without parameters ([16]). Therefore, presentation of the arithmetic neighbourhood of the element \(r \) belonging to the field \(K \) is the simplest way of expression that \(\{ r \} \) is existentially definable in \(K \).

We want to find integers \(r \) with property (4), integers \(r \) with property (5), and rational numbers \(r \) with property (6).

(4) Each arithmetic neighbourhood of \(r \) inside \(\mathbb{Z} \) is also a neighbourhood of \(r \) inside each ring extending \(\mathbb{Z} \).
(5) Each arithmetic neighbourhood of \(r \) inside \(\mathbb{Z} \) is also a neighbourhood of \(r \) inside \(\mathbb{Q} \).
(6) Each arithmetic neighbourhood of \(r \) inside \(\mathbb{Q} \) is also a neighbourhood of \(r \) inside each ring extending \(\mathbb{Q} \).

Obviously, condition (4) implies condition (5).

By condition (1) for any ring \(K \) each arithmetic neighbourhood of 1 inside \(K \) is also a neighbourhood of 1 inside each ring extending \(K \). Since \(0+0 = 0 \), by condition (2) for any ring \(K \) each arithmetic neighbourhood of 0 inside \(K \) is also a neighbourhood of 0 inside each ring extending \(K \).

We prove that for any ring \(K \) with \(2 \neq 0 \) each arithmetic neighbourhood of 2 inside \(K \) is also a neighbourhood of 2 inside each ring \(L \) extending \(K \). Assume that \(A \) is an arithmetic neighbourhood of 2 inside \(K \) and \(f : A \rightarrow L \) is an arithmetic map. Then \(1 \in A \), because in the opposite case the arithmetic map \(A \rightarrow \{0\} \) moves 2, which is impossible. Since \(f \) satisfies conditions (1) and (2), we get \(f(2) = f(1+1) = f(1) + f(1) = 1 + 1 = 2 \).

We prove that for any ring \(K \) with \(\frac{1}{2} \in K \) each arithmetic neighbourhood of \(\frac{1}{2} \) inside \(K \) is also a neighbourhood of \(\frac{1}{2} \) inside each ring \(L \) extending \(K \). Assume that \(A \) is an arithmetic neighbourhood of \(\frac{1}{2} \) inside \(K \) and \(f : A \rightarrow L \) is an arithmetic map. Then \(1 \in A \), because in the opposite case the arithmetic map \(A \rightarrow \{0\} \) moves \(\frac{1}{2} \), which is impossible. Since \(f \) satisfies conditions (1) and (2), we get \(1 = f(1) = f(\frac{1}{2} + \frac{1}{2}) = f(\frac{1}{2}) + f(\frac{1}{2}) \). Hence, \(f(\frac{1}{2}) = \frac{1}{2} \).

The above results imply that the numbers \(r = 1, r = 0, r = 2 \) satisfy conditions (4)–(6), and \(r = \frac{1}{2} \) satisfies condition (6).

Let \(K \) be an algebraically closed field and \(r \in K \) is arithmetically fixed. Then \(r \) belongs to the prime field in \(K \), see [16], cf. [15]. Let \(A = \{x_1, \ldots, x_n\} \) be a neighbourhood of \(r \), \(x_i \neq x_j \) if \(i \neq j \), and \(x_1 = r \). We choose all formulae \(x_i = 1 \ (1 \leq i \leq n) \), \(x_i + x_j = x_k \), \(x_i \cdot x_j = x_k \ (1 \leq i \leq j \leq n, 1 \leq k \leq n) \).
that are satisfied in A. Joining these formulae with conjunctions we get some formula \(\Phi \). Let \(V \) denote the set of variables in \(\Phi \). Since \(A \) is a neighbourhood of \(r \) inside \(K \), we have
\[
K \models \ldots \forall x_1 \ldots (\Phi \Rightarrow x_1 = r)
\]
\(x_s \in \{x_1\} \cup V \)

Of course, \(\{x_1\} \cup V = V \) ([15, the proof of Theorem 2] and [16, the proof of Theorem 1]) but this equality will not be used later.

Proposition 1. Let \(K \) be an algebraically closed field and \(r \in K \) is arithmetically fixed. Then each arithmetic neighbourhood of \(r \) inside \(K \) is also a neighbourhood of \(r \) inside each integral domain \(D \) extending \(K \).

Proof. We give a model-theoretic proof, an alternative proof follows from Hilbert’s Nullstellensatz. Let \(A \) be a neighbourhood of \(r \) inside \(K \). Let \(D_1 \) denote the algebraic closure of the fraction field of \(D \). It suffices to prove that \(A \) is a neighbourhood of \(r \) inside \(D_1 \). Since \(K \) is a subfield of \(D_1 \) and every embedding between algebraically closed fields is elementary ([6, pp. 103 and 57], we obtain
\[
D_1 \models \ldots \forall x_1 \ldots (\Phi \Rightarrow x_1 = r)
\]
\(x_s \in \{x_1\} \cup V \)

It implies that \(A \) is a neighbourhood of \(r \) inside \(D_1 \).

\(\square \)

Let \(\mathcal{T} \) denote the elementary theory of integral domains of characteristic 0.

Proposition 2. Let \(K \) be an algebraically closed field that extends \(\mathbb{Q} \) and \(r \in K \) is arithmetically fixed.

(I) If \(r = 0 \), then
\[
\mathcal{T} \models \ldots \forall x_1 \ldots (\Phi \Rightarrow x_1 = 0)
\]
\(x_s \in \{x_1\} \cup V \)

(II) If \(r = \frac{k}{w} \) for some \(k, w \in \{1, 2, 3, \ldots\} \), then
\[
\mathcal{T} \models \ldots \forall x_1 \ldots (\Phi \Rightarrow (1 + \ldots + 1) \cdot x_1 = 1 + \ldots + 1)
\]
\(x_s \in \{x_1\} \cup V \)

(III) If \(r = -\frac{k}{w} \) for some \(k, w \in \{1, 2, 3, \ldots\} \), then
\[
\mathcal{T} \models \ldots \forall x_1 \ldots (\Phi \Rightarrow (1 + \ldots + 1) \cdot x_1 + 1 + \ldots + 1 = 0)
\]
\(x_s \in \{x_1\} \cup V \)

Proof. We prove (II) and omit similar proofs of (I) and (III). It suffices to prove that the sentence
\[
\ldots \forall x_1 \ldots (\Phi \Rightarrow (1 + \ldots + 1) \cdot x_1 = 1 + \ldots + 1)
\]
\(x_s \in \{x_1\} \cup V \)

times \(w \)-times k-times
holds true in each integral domain of characteristic 0. Let G be any integral domain of characteristic 0. Let G_1 denote the algebraic closure of the fraction field of G. There exists an algebraically closed field M such that both K and G_1 embed into M. Of course,

$$K \models \ldots \forall x_\alpha \ldots (\Phi \Rightarrow (1 + \ldots + 1) \cdot x_1 = 1 + \ldots + 1)$$

Since every two algebraically closed fields of the same characteristic are elementary equivalent [6, p. 57], we obtain

$$M \models \ldots \forall x_\alpha \ldots (\Phi \Rightarrow (1 + \ldots + 1) \cdot x_1 = 1 + \ldots + 1)$$

Since G embeds into M, we obtain

$$G \models \ldots \forall x_\alpha \ldots (\Phi \Rightarrow (1 + \ldots + 1) \cdot x_1 = 1 + \ldots + 1)$$

\[\square\]

Let $n \in \mathbb{Z}, n \geq 3, S_n = \{1, 10, 20, 30\} \cup \{3, 3^2, 3^3, ..., 3^n\}, S = \bigcup_{n=3}^{\infty} S_n.$

Theorem 1. There is an arithmetic map $\gamma : S \to \mathbb{Z}[\sqrt{-1}]$ which moves all $r \in S \setminus \{1\}$. For each $r \in S_n \setminus \{1\}$ we have:

(7) S_n is an arithmetic neighbourhood of r inside \mathbb{R}, and so too inside \mathbb{Q} and \mathbb{Z}.

(8) S_n is not an arithmetic neighbourhood of r inside $\mathbb{Z}[\sqrt{-1}]$.

Proof. We prove (7). Assume that $f : S_n \to \mathbb{R}$ is an arithmetic map. Then,

$f(1) = 1$,

$f(9) = f(3 \cdot 3) = f(3) \cdot f(3) = (f(3))^2,$

$f(27) = f(3 \cdot 9) = f(3) \cdot f(9) = f(3) \cdot (f(3))^2 = (f(3))^3,$

$f(30) = f(27 + 3) = f(27) + f(3) = (f(3))^3 + f(3),$

$f(10) = f(9 + 1) = f(9) + f(1) = (f(3))^2 + 1,$

$f(20) = f(10 + 10) = f(10) + f(10) = (f(3))^2 + 1 + (f(3))^2 + 1 = 2 \cdot (f(3))^2 + 2,$

$f(30) = f(20 + 10) = f(20) + f(10) = 2 \cdot (f(3))^2 + 2 + (f(3))^2 + 1 = 3 \cdot (f(3))^2 + 3.$

Therefore, $(f(3))^3 + f(3) = 3 \cdot (f(3))^2 + 3$. Hence $(f(3) - 3) \cdot ((f(3))^2 + 1) = 0$. Thus $f(3) = 3$, and by induction we obtain $f(3^k) = 3^k$ for each $k \in \{1, 2, 3, ..., n\}$. Consequently.

$f(10) = f(9 + 1) = f(9) + f(1) = 9 + 1 = 10,$

$f(20) = f(10 + 10) = f(10) + f(10) = 10 + 10 = 20,$

$f(30) = f(20 + 10) = f(20) + f(10) = 20 + 10 = 30.$

We have proved (7). We define $\gamma : S \to \mathbb{Z}[\sqrt{-1}]$ as
\{(1, 1), (10, 0), (20, 0), (30, 0)\} \cup \{(3, \sqrt{-1}), (3^2, (\sqrt{-1})^2), (3^3, (\sqrt{-1})^3), \ldots\}

The map \(\gamma\) is arithmetic and \(\gamma\) moves all \(r \in S \setminus \{1\}\), so condition (8) holds true.

We state a similar result without a proof. Let \(n \in \mathbb{Z}, n \geq 1\),
\[T_n = \{-2, 1, 5, 10, 20\} \cup \{4^1, \ldots, 4^n\}, \quad T = \bigcup_{n=1}^{\infty} T_n.\]
Let us define \(\tau : T \to \mathbb{Z}[\sqrt{-1}]\) as
\[\{(\pm 2, \sqrt{-1}), (1, 1), (5, 0), (10, 0), (20, 0)\} \cup \{(4, -1), (4^2, 1), (4^3, -1), (4^4, 1), \ldots\}\]
The map \(\tau\) is arithmetic and \(\tau\) moves all \(r \in T \setminus \{1\}\). For each \(r \in T_n \setminus \{-2, 1\}\) we have:
\(T_n\) is an arithmetic neighbourhood of \(r\) inside \(\mathbb{R}\), and so too inside \(\mathbb{Q}\) and \(\mathbb{Z}\), \(T_n\) is not an arithmetic neighbourhood of \(r\) inside \(\mathbb{Z}[\sqrt{-1}]\).

Remark. By Theorem 1 for infinitely many integers \(r\) fail both conditions (4) and (6). In Theorems 5, 6, and 7 we describe some other rational numbers \(r\) without property (6).

Let \(n \in \mathbb{Z}, n \geq 3\), \(B_n = \{1, 5, 25, 26\} \cup \{3, 3^2, 3^3, \ldots, 3^n\}, \quad B = \bigcup_{n=3}^{\infty} B_n.\)

Theorem 2. There is an arithmetic map \(\phi : B \to \mathbb{Q}\) which moves all \(r \in B \setminus \{1\}\). For each \(r \in B_n \setminus \{1, 5\}\) we have:
\(9\) \(B_n\) is an arithmetic neighbourhood of \(r\) inside \(\mathbb{Z}\),
\(10\) \(B_n\) is not an arithmetic neighbourhood of \(r\) inside \(\mathbb{Q}\).

Proof. We prove (9). Assume that \(f : B_n \to \mathbb{Z}\) is an arithmetic map. Then,
\(f(1) = 1,\)
\(f(9) = f(3 \cdot 3) = f(3) \cdot f(3) = (f(3))^2,\)
\(f(27) = f(3 \cdot 9) = f(3) \cdot f(9) = f(3) \cdot (f(3))^2 = (f(3))^3,\)
\(f(25) = f(5 \cdot 5) = f(5) \cdot f(5) = (f(5))^2,\)
\(f(26) = f(25 + 1) = f(25) + f(1) = (f(5))^2 + 1,\)
\(f(27) = f(26 + 1) = f(26) + f(1) = (f(5))^2 + 1 + 1 = (f(5))^2 + 2.\)

Therefore, \((f(3))^3 = f(27) = (f(5))^2 + 2\). The equation \(x^3 = y^2 + 2\) has \((3, \pm 5)\) as its only integer solutions, see [17, p. 398], [8, p. 124], [12, p. 104], [9, p. 66], [11, p. 57]. Thus, \(f(3) = 3\) and \(f(5) = \pm 5\). Hence, \(f(25) = f(5 \cdot 5) = f(5) \cdot f(5) = (\pm 5)^2 = 25, f(26) = f(25 + 1) = f(25) + f(1) = 25 + 1 = 26.\)

Since \(f(3) = 3,\) we get by induction \(f(3^k) = 3^k\) for each \(k \in \{1, 2, 3, \ldots, n\}\). We have proved (9). The equation \(x^3 = y^2 + 2\) has a rational solution \(\left(\frac{129}{100}, \frac{383}{1000}\right),\) see [2, p. 173], [13, p. 2], [9 p. 66], [11, p. 57]. We define \(\phi : B \to \mathbb{Q}\) as

\[
\left\{(1, 1), \left(\frac{5}{1000}, \frac{383}{1000}\right), \left(25, \left(\frac{383}{1000}\right)^2\right), \left(26, \left(\frac{383}{1000}\right)^2 + 1\right)\right\} \cup \left\{\left(3, \frac{129}{100}\right) \left(3^2, \left(\frac{129}{100}\right)^2\right), \left(3^3, \left(\frac{129}{100}\right)^3\right), \ldots\right\}
\]

\[
\left\{(1, 1), \left(\frac{5}{1000}, \frac{383}{1000}\right), \left(25, \left(\frac{383}{1000}\right)^2\right), \left(26, \left(\frac{383}{1000}\right)^2 + 1\right)\right\} \cup \left\{\left(3, \frac{129}{100}\right) \left(3^2, \left(\frac{129}{100}\right)^2\right), \left(3^3, \left(\frac{129}{100}\right)^3\right), \ldots\right\}
\]
The map ϕ is arithmetic and ϕ moves all $r \in B \setminus \{1\}$, so condition (10) holds true.

We present a simpler counterexample for $r = -1$. Let $G = \{-4, -1, 1, 3, 9, 12, 16\}, \eta : G \to \mathbb{Q}, \eta = \{(−4, \frac{1}{2}), (−1, 1), (1, 1), (3, \frac{1}{2}), (9, \frac{1}{4}), (12, \frac{3}{4}), (16, \frac{1}{2})\}$. The map η is arithmetic and η moves $−1$. We prove that G is an arithmetic neighbourhood of $−1$ inside \mathbb{Z}. Assume that $f : G \to \mathbb{Z}$ is an arithmetic map. Since

$$f(-1) = f(-4 + 3) = f(-4) + f(3),$$

we get $f(-4) = f(-1) - f(3)$. Hence,

$$f(16) = f((-4) \cdot (-4)) = f(-4) \cdot f(-4) = (f(-1) - f(3))^2,$$

$$f(12) = f(-4 + 16) = f(-4) + f(16) = f(-1) - f(3) + (f(-1) - f(3))^2.$$

Since $1 = f((-1) \cdot (-1)) = f(-1) \cdot f(-1)$, we get $f(-1) = \pm 1$. Assume, on the contrary, that $f(-1) = 1$. Thus,

$$1 - f(3) + (1 - f(3))^2 = f(12) = f(3 + 3 \cdot 3) = f(3) + f(3 \cdot 3) = f(3) + (f(3))^2$$

Solving this equation for $f(3)$ we obtain $2 \cdot f(3) = 1$, a contradiction.

Let $Y = \{-4, -1, 1, 3, 9, 12, 14, 16, 20, 180, 196\}, \kappa : Y \to \mathbb{Q}(\sqrt{3}),$

$$\kappa = \{\left(-4, \frac{1}{2}\right), (-1, 1), (1, 1), \left(3, \frac{1}{2}\right), \left(9, \frac{1}{4}\right), \left(12, \frac{3}{4}\right),$$

$$\left(14, \frac{\sqrt{3}}{4}\right), \left(16, \frac{1}{4}\right), \left(20, -\frac{1}{4}\right), \left(180, -\frac{1}{16}\right), \left(196, \frac{3}{16}\right)\}$$

The map κ is arithmetic and κ moves -1. We prove that Y is an arithmetic neighbourhood of -1 inside \mathbb{Q}. Let $f : Y \to \mathbb{Q}$ be an arithmetic map, and assume, on the contrary, that $f(-1) = 1$. As previously, we conclude that

$f(3) = \frac{1}{2}$ and $f(-4) = f(-1) - f(3) = 1 - \frac{1}{2} = \frac{1}{2}$. Hence,

$$f(9) = f(3 \cdot 3) = f(3) \cdot f(3) = \frac{1}{2} \cdot \frac{1}{2} = \frac{1}{4},$$

$$f(16) = f((-4) \cdot (-4)) = f(-4) \cdot f(-4) = \frac{1}{2} \cdot \frac{1}{2} = \frac{1}{4}.$$

Since $f(16) = f(-4 + 20) = f(-4) + f(20)$, we get $f(20) = f(16) - f(-4) = \frac{1}{4} - \frac{1}{2} = -\frac{1}{4}$. Therefore,

$$f(180) = f(9 \cdot 20) = f(9) \cdot f(20) = \frac{1}{4} \cdot (-\frac{1}{4}) = -\frac{1}{16},$$

$$(f(4))^2 = f(14 \cdot 14) = f(180 + 16) = f(180) + f(16) = -\frac{1}{16} + \frac{1}{4} = \frac{3}{16},$$

a contradiction.

Let $M = \{-4, -1, 1, 3, 5, 9, 11, 42, 45, 121, 126\}, \chi : M \to \mathbb{Z}[\sqrt{-1}],$

$$\chi = \{(-4, 0), (-1, 1), (1, 1), (3, 1), (5, 1), (9, 1), (11, \sqrt{-1}), (42, 0), (45, 1), (121, -1), (126, 0)\}$$

The map χ is arithmetic and χ moves -1. We prove that M is an arithmetic neighbourhood of -1 inside \mathbb{R}. Let $f : M \to \mathbb{R}$ be an arithmetic map, and assume, on the contrary, that $f(-1) = 1$. Since $1 = f(-4 + 3) = f(-4) + f(3)$, we get $f(-4) = 1 - f(3)$. Hence

$$1 = f(-4 + 5) = f(-4) + f(5) = 1 - f(3) + f(-4 + 3 \cdot 3) =$$

$$1 - f(3) + f(-4) + f(3 \cdot 3) = 1 - f(3) + 1 - f(3) + (f(3))^2$$
Solving this equation for $f(3)$ we obtain $f(3) = 1$. Therefore,

$$f(-4) = 1 - f(3) = 1 - 1 = 0,$$

$$f(5) = 0 + f(5) = f(-4) + f(5) = f(-4 + 5) = 1,$$

$$f(9) = f(3 \cdot 3) = f(3) \cdot f(3) = 1 \cdot 1 = 1,$$

$$f(45) = f(5 \cdot 9) = f(5) \cdot f(9) = 1 \cdot 1 = 1.$$

Since $f(45) = f(3 + 42) = f(3) + f(42) = 1 + f(42)$, we get $f(42) = f(45) - 1 = 1 - 1 = 0$. Thus, $f(126) = f(3 \cdot 42) = f(3) \cdot f(42) = 1 \cdot 0 = 0$. Since $0 = f(5 + 11 \cdot 11) = f(5) + f(11 \cdot 11) = 1 + (f(11))^2$, we get $(f(11))^2 = -1$, a contradiction.

Let w denote the unique real root of the polynomial $x^3 - x^2 - x - 3$.

Theorem 3. There is an arithmetic map $\psi : \{-4\} \cup B \rightarrow \mathbb{Q}(w)$ which moves all $r \in \{-4\} \cup B \setminus \{1\}$. For each $r \in \{-4\} \cup B_n \setminus \{1\}$ we have:

(11) $\{-4\} \cup B_n$ is an arithmetic neighbourhood of r inside \mathbb{Q},

(12) $\{-4\} \cup B_n$ is not an arithmetic neighbourhood of r inside $\mathbb{Q}(w)$.

Proof. We prove (11). Assume that $f : \{-4\} \cup B_n \rightarrow \mathbb{Q}$ is an arithmetic map. Since $1 = f(1) = f(-4 + 5) = f(-4) + f(5)$, we get

$$f(-4) = 1 - f(5) \tag{13}$$

Hence,

$$f(5) = f(-4 + (3 \cdot 3)) = f(-4) + f(3 \cdot 3) = f(-4) + f(3) \cdot f(3) = 1 - f(5) + (f(3))^2.$$

Therefore,

$$f(5) = \frac{1 + (f(3))^2}{2} \tag{14}$$

From equations (13) and (14), we obtain

$$f(-4) = 1 - f(5) = 1 - \frac{1 + (f(3))^2}{2} = \frac{1 - (f(3))^2}{2} \tag{15}$$

Proceeding exactly as in the proof of Theorem 2, we obtain $(f(3))^3 = (f(5))^2 + 2$. By this and equation (14), we get

$$(f(3))^3 = \left(\frac{1 + (f(3))^2}{2}\right)^2 + 2 \tag{16}$$

Equation (16) is equivalent to the equation

$$(f(3) - 3) \cdot ((f(3))^3 - (f(3))^2 - f(3) - 3) = 0$$

The equation $x^3 - x^2 - x - 3 = 0$ has no rational solutions, so we must have $f(3) = 3$. By induction we get $f(3^k) = 3^k$ for each $k \in \{1, 2, 3, ..., n\}$. Knowing that $f(3) = 3$, from equations (15) and (14) we obtain:

$$f(-4) = \frac{1 - (f(3))^2}{2} = \frac{1 - 3^2}{2} = -4$$
\[f(5) = \frac{1 + (f(3))^2}{2} = \frac{1 + 3^2}{2} = 5 \]

Consequently,

\[f(25) = f(5 \cdot 5) = f(5) \cdot f(5) = 5 \cdot 5 = 25 \]

\[f(26) = f(25 + 1) = f(25) + f(1) = 25 + 1 = 26 \]

The proof of (11) is completed. We define \(\psi : \{ -4 \} \cup B \to \mathbb{Q}(w) \) as

\[
\left\{ \left(-4, \frac{1-w^2}{2}\right), (1,1), \left(5, \frac{1+w^2}{2}\right), \left(25, \left(\frac{1+w^2}{2}\right)^2\right), \left(26, \left(\frac{1+w^2}{2}\right)^2 + 1\right) \right\} \cup \{(3,w), (3^2, w^2), (3^3, w^3), \ldots\}
\]

The map \(\psi \) is arithmetic and \(\psi \) moves all \(r \in \{ -4 \} \cup B \backslash \{1\} \), so condition (12) holds true.

Let \(n \in \mathbb{Z}, n \geq 1, C_n = \{1, 3, 5, 13, 25, 65, 169, 194, 195\} \cup \{9, 9^2, 9^3, \ldots, 9^n\} \),

\(C = \bigcup_{n=1}^{\infty} C_n. \)

Theorem 4. There is an arithmetic map \(g : C \to \mathbb{Q} \) which moves all \(r \in C \backslash \{1\}. \)

(17) \(C_n \) is an arithmetic neighbourhood inside \(\mathbb{Z} \) for \(9, 9^2, 9^3, \ldots, 9^n \),

(18) \(C_n \) is not an arithmetic neighbourhood inside \(\mathbb{Q} \) for \(9, 9^2, 9^3, \ldots, 9^n \).

Proof. We prove (17). Assume that \(f : C_n \to \mathbb{Z} \) is an arithmetic map. Then,

\[
(f(5))^2 + (f(13))^2 + 1 = f(5^2) + f(13^2) + f(1) = f(5^2 + 13^2 + 1) = f((5 \cdot 13) \cdot 3) = f(5 \cdot 13) \cdot f(3) = f(5) \cdot f(13) \cdot f(3).
\]

If integers \(x, y, z \) satisfy \(x^2 + y^2 + 1 = xyz \) then \(z = \pm 3 \), see [8, p. 299], [9, pp. 58–59], [10, p. 31], [11, pp. 51–52], [1], cf. Theorem 4 in [7, p. 218]. Thus, \(f(3) = \pm 3 \). Hence \(f(9) = f(3 \cdot 3) = f(3) \cdot f(3) = (\pm 3)^2 = 9 \), and by induction we obtain \(f(9^k) = 9^k \) for each \(k \in \{1, 2, 3, \ldots, n\} \). The proof of (17) is completed. We define \(g : C \to \mathbb{Q} \) as

\[
\left\{ (1,1), \left(3, \frac{9}{4}\right), (5,2), (13,2), (25,4), (25,4), (65,4), (169,4), (194,8), (195,9) \right\} \cup \nabla \left\{ \left(9, \frac{81}{16}\right), \left(9^2, \left(\frac{81}{16}\right)^2\right), \left(9^3, \left(\frac{81}{16}\right)^3\right), \ldots, \left(9^n, \left(\frac{81}{16}\right)^n\right) \right\}
\]

The map \(g \) is arithmetic and \(g \) moves all \(r \in C \backslash \{1\} \), so condition (18) holds true. \(\square \)
We know (see Theorem 2 or Theorem 4) that infinitely many integers \(r \) do not satisfy condition (5). Now, we sketch a more elementary (but longer) proof of this fact. Let \(n \in \mathbb{Z}, n \geq 3, \)

\[
H_n = \{1, 2, 4, 16, 60, 64, 3600, 3604, 3620, 3622, 3623, 7^3 \cdot 13^2, 7^3 \cdot 13^2 + 1\} \cup \{13, 13^2, 7, 7^2, 7^3, \ldots, 7^n\}
\]

\(H_n \) is an arithmetic neighbourhood inside \(\mathbb{Z} \) for each \(r \in H_n \setminus \{13\} \). \(H_n \) is not an arithmetic neighbourhood inside \(\mathbb{Q} \) for 13, 13^2, 7, 7^2, 7^3, \ldots, 7^n. \) The proofs follow from the following observations:

\[
7^3 \cdot 13^2 + 1 = 16 \cdot 3623
\]

\[\forall x, y \in \mathbb{Z} \ (x^3 \cdot y^2 = 7^3 \cdot 13^2 \Rightarrow (x = 7 \land y = \pm 13))\]

\[
(7^3)^3 \cdot (8 \cdot 13)^3 = 7^3 \cdot 13^2
\]

Theorem 5. Let

\[
D = \{-36, \frac{1}{2}, 1, 2, \frac{5}{2}, 5, 12, 25, 50, 100, 12^2, 200, 400, 425, 430, 432, 36^2, 12^3\}.
\]

(19) \(D \) is an arithmetic neighbourhood inside \(\mathbb{Q} \) for 12, 12^2, 36^2, 12^3.

(20) \(D \) is not an arithmetic neighbourhood inside \(\mathbb{Q}(\sqrt[3]{5}) \) for 12, 12^2, 36^2, 12^3.

Proof. We prove (19). Assume that \(f : D \to \mathbb{Q} \) is an arithmetic map. Then, \(f(1) = 1 \) and \(f(2) = f(1 + 1) = f(1) + f(1) = 1 + 1 = 2 \). Since \(1 = f(1) = f\left(\frac{1}{2} + \frac{1}{2}\right) = f\left(\frac{1}{2}\right) + f\left(\frac{1}{2}\right) \), we get \(f\left(\frac{1}{2}\right) = \frac{1}{2} \). Knowing \(f\left(\frac{1}{2}\right) \) and \(f(2) \), we calculate

\[
f\left(\frac{5}{2}\right) = f\left(2 + \frac{1}{2}\right) = f(2) + f\left(\frac{1}{2}\right) = 2 + \frac{1}{2} = \frac{5}{2},
f(5) = f\left(\frac{5}{2} + \frac{5}{2}\right) = f\left(\frac{5}{2}\right) + f\left(\frac{5}{2}\right) = \frac{5}{2} + \frac{5}{2} = 5,
f(25) = f(5 \cdot 5) = f(5) \cdot f(5) = 5 \cdot 5 = 25,
f(50) = f(25 + 25) = f(25) + f(25) = 25 + 25 = 50,
f(100) = f(50 + 50) = f(50) + f(50) = 50 + 50 = 100,
f(200) = f(100 + 100) = f(100) + f(100) = 100 + 100 = 200,
f(400) = f(200 + 200) = f(200) + f(200) = 200 + 200 = 400,
f(425) = f(400 + 25) = f(400) + f(25) = 400 + 25 = 425,
f(430) = f(425 + 5) = f(425) + f(5) = 425 + 5 = 430,
f(432) = f(430 + 2) = f(430) + f(2) = 430 + 2 = 432.
\]

Therefore, \((f(12))^3 = (f(12) \cdot f(12)) \cdot f(12) = f(12) \cdot f(12) \cdot f(12) = f((12 \cdot 12) \cdot 12) = f((-36)^2 + 432) = f((-36)^2) + f(432) = (f(-36))^2 + 432. \) The equation \(x^3 = y^2 + 432 \) has \((12, \pm 36) \) as its only rational solutions, see [3], [12, p. 107], [2, p. 174], [4, p. 296], [8, p. 247], [14, p. 54]. Thus, \(f(12) = 12 \) and \(f(-36) = \pm 36. \) Hence, \(f(12^2) = f(12) \cdot f(12) = 12^2, f(12^3) = f(12 \cdot 12^2) = f(12) \cdot f(12^2) = 12 \cdot 12^2 = 12^3, f(36^2) = f((-36) \cdot (-36)) = f(-36) \cdot f(-36) = (\pm 36)^2 = 36^2. \) The proof of (19) is completed. We find that
\[8^3 = (4 \cdot \sqrt{3})^2 + 432 \] and we define \(h : D \to \mathbb{Q}(\sqrt{5}) \) as

\[
\begin{align*}
\left\{ (-36, 4 \cdot \sqrt{5}, (12, 8), (12^2, 8^2), (36^2, 80), (12^3, 8^3)) \right\} & \cup \\
\text{id}\left(\left\{ \frac{1}{2}, 1, 2, \frac{5}{2}, 5, 25, 50, 100, 200, 400, 425, 430, 432 \right\} \right)
\end{align*}
\]

We summarize the check that \(h \) is arithmetic. Obviously, \(h(1) = 1 \). To check the condition

\[\forall x, y, z \in D \ (x + y = z \implies h(x) + h(y) = h(z)) \]

it is enough to consider all the triples \((x, y, z) \in D \times D \times D\) for which \(x+y = z \), \(x \leq y \), and \(h \) is not the identity on \(\{x, y, z\} \). There is only one such triple: \((432, 36^2, 12^3)\).

To check the condition

\[\forall x, y, z \in D \ (x \cdot y = z \implies h(x) \cdot h(y) = h(z)) \]

it is enough to consider all the triples \((x, y, z) \in D \times D \times D\) for which \(x \cdot y = z \), \(x \leq y \), \(x \neq 1 \), \(y \neq 1 \), and \(h \) is not the identity on \(\{x, y, z\} \). These triples are as follows:

\[(-36, -36, 36^2), (12, 12, 12^2), (12, 12^2, 12^3) \]

The sentence (20) is true because \(h \) is arithmetic and \(h \) moves \(12, 12^2, 36^2, 12^3 \).

\[\square \]

Corollary. Let us define by induction the finite sets \(D_n \subseteq \mathbb{Q} \ (n = 0, 1, 2, \ldots) \).

Let \(D_0 = D, d_n \) denote the greatest number in \(D_n, D_{n+1} = D_n \cup \{d_n^2\} \). For each \(n \in \{0, 1, 2, \ldots\} \) we have:

\[D_n \text{ is an arithmetic neighbourhood of } d_n \text{ inside } \mathbb{Q}, \]

\[D_n \text{ is not an arithmetic neighbourhood of } d_n \text{ inside } \mathbb{Q}(\sqrt{5}). \]

Let \(u = \frac{1 + \sqrt{33}}{8}, n \in \mathbb{Z}, n \geq 3, E_n = \{\frac{1}{2}, 1, \frac{3}{2}, \frac{9}{4}\} \cup \{9, -2, (-2)^2, (-2)^3, \ldots, (-2)^n\}, E = \bigcup_{n=3}^{\infty} E_n. \)

Theorem 6. There is an arithmetic map \(\sigma : E \to \mathbb{Q}(\sqrt{33}) \) which moves 9 and all the numbers \((-2)^k\), where \(k \in \{1, 2, 3, \ldots\} \). For each \(r \in E_n \setminus \{\frac{1}{2}, 1, \frac{3}{2}, \frac{9}{4}\} \) we have:

(21) \(E_n \) is an arithmetic neighbourhood of \(r \) inside \(\mathbb{Q} \),

(22) \(E_n \) is not an arithmetic neighbourhood of \(r \) inside \(\mathbb{Q}(\sqrt{33}) \).

Proof. We prove (21). Assume that \(f : E_n \rightarrow \mathbb{Q} \) is an arithmetic map.

Since \(1 = f(\frac{1}{2} + \frac{1}{2}) = f(\frac{1}{2}) + f(\frac{1}{2}) \), we get \(f(\frac{1}{2}) = \frac{1}{2} \). Hence,

\[f\left(\frac{3}{2} \right) = f\left(1 + \frac{1}{2} \right) = f(1) + f\left(\frac{1}{2} \right) = 1 + \frac{1}{2} = \frac{3}{2}. \]

Thus,

\[f\left(\frac{9}{4} \right) = f\left(\frac{3}{2} \cdot \frac{3}{2} \right) = f\left(\frac{3}{2} \right) \cdot f\left(\frac{3}{2} \right) = \frac{3}{2} \cdot \frac{3}{2} = \frac{9}{4}. \]

Therefore,
Arithmetic neighbourhoods of numbers

359

\(f(9) = f(\frac{9}{4} \cdot 4) = f(\frac{9}{4}) \cdot f((-2) \cdot (-2)) = \frac{9}{4} \cdot (f(-2))^2 \). It implies that

\[1 = f(-2 \cdot 4 + 9) = f(-2 \cdot 4) + f(9) = f(-2) \cdot f(4) + \frac{9}{4} \cdot (f(-2))^2 = \]

\[f(-2) \cdot f(-2) + \frac{9}{4} \cdot (f(-2))^2 = (f(-2))^3 + \frac{9}{4} \cdot (f(-2))^2 \]

Solving this equation for \(f(-2) \) we obtain \(f(-2) = -2 \), the only rational root.

Another roots are \(\frac{-1-\sqrt{33}}{8} \) and \(\frac{-1+\sqrt{33}}{8} \). Knowing \(f(-2) \), we calculate

\[f(9) = \frac{9}{4} \cdot (f(-2))^2 = \frac{9}{4} \cdot (-2)^2 = 9 \]

Applying induction, we obtain \(f((-2)^k) = (-2)^k \) for each \(k \in \{1, 2, 3, ..., n\} \).

We have proved (21). We define \(\sigma : E \to \mathbb{Q} (\sqrt{33}) \) as

\[\text{id} \left(\left\{ \frac{1}{2}, 1, \frac{3}{2}, \frac{9}{4} \right\} \right) \cup \left\{ \left(9, \frac{9}{4} \cdot u^2\right), \left(-2, u\right), \left((-2)^2, u^2\right), \left((-2)^3, u^3\right), ... \right\} \]

The map \(\sigma \) is arithmetic and \(\sigma \) moves all \(r \in E_n \setminus \{\frac{1}{2}, 1, \frac{3}{2}, \frac{9}{4}\} \), so condition (22) holds true.

\[\square \]

Theorem 7 which follows is more general than the previous ones. Let \(n \) be an integer, and assume that \(n \geq 3 \) and \(n \not\in \{2^2, 2^3, 2^4, ...\} \). We find the smallest integer \(\rho(n) \) such that \(n^3 \leq 2^{\rho(n)} \). From the definition of \(\rho(n) \) we obtain \(2^{\rho(n)-1} < n^3 \). It gives

\[2^{\rho(n)} = 2 \cdot 2^{\rho(n)-1} < 2 \cdot n^3 < n \cdot n^3 = n^4 \]

Since \(n^3 \leq 2^{\rho(n)} < n^4 \), \(2^{\rho(n)} \) has four digits in the number system with base \(n \). Let

\[2^{\rho(n)} = m_3 \cdot n^3 + m_2 \cdot n^2 + m_1 \cdot n + m_0 \]

where \(m_3 \in \{1, 2, ..., n-1\} \) and \(m_2, m_1, m_0 \in \{0, 1, 2, ..., n-1\} \). Let

\[J(n) = \left\{ -1, 0, 1, -\frac{1}{2}, -\frac{1}{2^2}, -\frac{1}{2^3}, ..., -\frac{1}{2^{\rho(n)-1}}, n, n^2 \right\} \cup \right\{ k \cdot n^3 : k \in \{1, 2, ..., m_3\} \right\} \cup \right\{ m_3 \cdot n^3 + k \cdot n^2 : k \in \{1, 2, ..., m_2\} \right\} \cup \right\{ m_3 \cdot n^3 + m_2 \cdot n^2 + k \cdot n : k \in \{1, 2, ..., m_1\} \right\} \cup \right\{ m_3 \cdot n^3 + m_2 \cdot n^2 + m_1 \cdot n + k : k \in \{1, 2, ..., m_0\} \right\} \]

Of course, \(\{2^{\rho(n)}, 2^{\rho(n)}-1, 2^{\rho(n)}-2, ..., 2^{\rho(n)}-m_0\} \subseteq J(n) \).

Theorem 7. \(J(n) \) is an arithmetic neighbourhood of \(n \) inside \(\mathbb{R} \), and so too inside \(\mathbb{Q} \). \(J(n) \) is not an arithmetic neighbourhood of \(n \) inside \(\mathbb{C} \).
Proof. Assume that \(f : \mathcal{J}(n) \to \mathbb{R} \) is an arithmetic map. Since \(0 + 0 = 0 \), \(f(0) = 0 \). Since \(f(0) = 0 \) and \(-1 + 1 = 0 \), \(f(-1) = -1 \). Since
\[
-1 = f(-1) = f \left(\frac{-1}{2} \right) + f \left(\frac{-1}{2} \right) = f \left(\frac{-1}{2} \right) + f \left(\frac{-1}{2} \right)
\]
we get \(f \left(\frac{-1}{2} \right) = -\frac{1}{2} \). Hence, from \(\frac{-1}{2} = \frac{-1}{2} + \frac{-1}{2} \) we obtain \(f \left(\frac{-1}{2} \right) = -\frac{1}{2} \). Applying induction we obtain \(f \left(\frac{-1}{2^{\rho(n)}} \right) = -\frac{1}{2^{\rho(n)}} \). We have
\[
-1 = f(-1) = f \left(2^{\rho(n)} \right) \cdot \left(-\frac{1}{2^{\rho(n)}} \right) + f \left(\frac{-1}{2^{\rho(n)}} \right) \cdot \left(-\frac{1}{2^{\rho(n)}} \right) = f(2^{\rho(n)}) \cdot \left(-\frac{1}{2^{\rho(n)}} \right)
\]
Hence \(f(2^{\rho(n)}) = 2^{\rho(n)} \). Applying induction we get
\[
2^{\rho(n)} = f(2^{\rho(n)}) = f(m_3 \cdot n^3 + m_2 \cdot n^2 + m_1 \cdot n + m_0)
\]
\[
= m_3 \cdot (f(n))^3 + m_2 \cdot (f(n))^2 + m_1 \cdot f(n) + m_0
\]
We want to prove that \(f(n) = n \). It suffices to show that the function
\[
\mathbb{R} \ni x \xrightarrow{\zeta} m_3 \cdot x^3 + m_2 \cdot x^2 + m_1 \cdot x + m_0 \in \mathbb{R}
\]
takes the value \(2^{\rho(n)} \) only for \(x = n \). Since \(\zeta \) is strictly increasing in the interval \([0, \infty)\), for each \(x \in [0, n) \) we have \(\zeta(x) < \zeta(n) = 2^{\rho(n)} \), and for each \(x \in (n, \infty) \) we have \(\zeta(x) > \zeta(n) = 2^{\rho(n)} \). We show that \(\zeta \) does not reach the value \(2^{\rho(n)} \) for \(x \in (-\infty, 0] \). For each \(x \in (-\infty, 0) \) we have
\[
\zeta(x) = m_3 \cdot x^3 + m_2 \cdot x^2 + m_1 \cdot x + m_0 \leq x^3 + (n - 1) \cdot x^2 + n - 1 \quad (23)
\]
By (23), if \(x \in (-\infty, -n + 1] \) then
\[
\zeta(x) \leq x^3 + (n - 1) \cdot x^2 + n - 1 = (x + n - 1) \cdot x^2 + n - 1 \leq n - 1 < n^3 \leq 2^{\rho(n)}
\]
Thus, \(\zeta(x) \neq 2^{\rho(n)} \). By (23), if \(x \in [-n + 1, 0] \) then
\[
\zeta(x) \leq x^3 + (n - 1) \cdot x^2 + n - 1 \leq (n - 1) \cdot x^2 + n - 1 \leq (n - 1)^3 + n - 1 < n^3 \leq 2^{\rho(n)}
\]
Thus, \(\zeta(x) \neq 2^{\rho(n)} \). We have proved that \(f(n) = n \). It proves that \(\mathcal{J}(n) \) is an arithmetic neighbourhood of \(n \) inside \(\mathbb{R} \). We prove that \(\mathcal{J}(n) \) is not an arithmetic neighbourhood of \(n \) inside \(\mathbb{C} \). The number \(n \) is a single root of the polynomial
\[
m_3 \cdot x^3 + m_2 \cdot x^2 + m_1 \cdot x + m_0 - 2^{\rho(n)}
\]
because the derivative of this polynomial takes the non-zero value
\[
3 \cdot m_3 \cdot n^2 + 2 \cdot m_2 \cdot n + m_1 \geq 3 \cdot n^2 \geq 27
\]
at \(x = n \). Hence the polynomial
\[
m_3 \cdot x^3 + m_2 \cdot x^2 + m_1 \cdot x + m_0 - 2^{\rho(n)}
\]
has two conjugated roots \(z_1, z_2 \in \mathbb{C} \setminus \mathbb{R} \). Let \(z = z_1 \) or \(z = z_2 \). We define \(\theta : \mathcal{J}(n) \to \mathbb{C} \) as
\[
\text{id} \left(\left\{ -1, 0, 1, -\frac{1}{2}, -\frac{1}{2^2}, ..., -\frac{1}{2^{\rho(n)}} \right\} \right) \cup \{(n, z), (n^2, z^2)\} \cup \{(k \cdot n^3, k \cdot z^3) : k \in \{1, 2, ..., m_3\}\} \cup \{(m_3 \cdot n^3 + k \cdot n^2, m_3 \cdot z^3 + k \cdot z^2) : k \in \{1, 2, ..., m_2\}\} \cup \{(m_3 \cdot n^3 + m_2 \cdot n^2 + k \cdot n, m_3 \cdot z^3 + m_2 \cdot z^2 + k \cdot z) : k \in \{1, 2, ..., m_1\}\} \cup \{(m_3 \cdot n^3 + m_2 \cdot n^2 + m_1 \cdot n + k, m_3 \cdot z^3 + m_2 \cdot z^2 + m_1 \cdot z + k) : k \in \{1, 2, ..., m_0\}\}
\]

Of course, \(\theta(x) = x \) for each \(x \in \{2^{\rho(n)}, 2^{\rho(n)} - 1, 2^{\rho(n)} - 2, ..., 2^{\rho(n)} - m_0\} \). Since \(\theta(n) = z \neq n \), \(\theta \) moves \(n \). We summarize the check that \(\theta \) is arithmetic.

Obviously, \(\theta(1) = 1 \). To check the condition
\[
\forall x, y, z \in \mathcal{J}(n) \ (x + y = z \Rightarrow \theta(x) + \theta(y) = \theta(z))
\]
it is enough to consider all the triples \((x, y, z) \in \mathcal{J}(n) \times \mathcal{J}(n) \times \mathcal{J}(n)\) for which \(x + y = z \), \(x \leq y \), \(x \neq 0 \), \(y \neq 0 \), and \(\theta \) is not the identity on \(\{x, y, z\} \). These triples are as follows:
\[
(k \cdot n^3, l \cdot n^3, (k + l) \cdot n^3), \text{ where } k, l, k + l \in \{1, 2, ..., m_3\} \text{ and } k \leq l,
\]
\[
(n^2, m_3 \cdot n^3 + k \cdot n^2, m_3 \cdot n^3 + (k + 1) \cdot n^2), \text{ where } k, k + 1 \in \{0, 1, 2, ..., m_2\},
\]
\[
(n, m_3 \cdot n^3 + m_2 \cdot n^2 + k \cdot n, m_3 \cdot n^3 + m_2 \cdot n^2 + (k + 1) \cdot n), \text{ where } k, k + 1 \in \{0, 1, 2, ..., m_1\}.
\]

To check the condition
\[
\forall x, y, z \in \mathcal{J}(n) \ (x \cdot y = z \Rightarrow \theta(x) \cdot \theta(y) = \theta(z))
\]
it is enough to consider all the triples \((x, y, z) \in \mathcal{J}(n) \times \mathcal{J}(n) \times \mathcal{J}(n)\) for which \(x \cdot y = z \), \(x \leq y \), \(x \neq 1 \), \(y \neq 1 \), \(x \neq 0 \), \(y \neq 0 \), and \(\theta \) is not the identity on \(\{x, y, z\} \). These triples are as follows:
\[
(n, n, n^2), (n, n^2, n^3).
\]

\(\square \)

References

[1] E. S. Barnes, On the Diophantine equation \(x^2 + y^2 + c = xyz \), J. London Math. Soc. 28 (1953), 242–244.

Received: September 14, 2007