Homomorphism Theorems in GT-Algebras

Jaedeok Kim

Department of Mathematics, Computing and Information Sciences
Jacksonville State University
Jacksonville, AL 36265-1602, USA
jkim@jsu.deu

Youngmi Kim

Department of Mathematics, Computing and Information Sciences
Jacksonville State University
Jacksonville, AL 36265-1602, USA
ykim@jsu.deu

Eun Hwan Roh*

Department of Mathematics Education
Chinju National University of Education
Jinju 660-756, Korea
ehroh@cue.ac.kr ; ehroh0923@gmail.com

Abstract
We introduce the notion of normal GT-filters in GT-algebras, and we establish construct the quotient GT-algebras via normal GT-filter, and we have the fundamental theorem of homomorphisms for GT-algebras as a consequence.

Mathematics Subject Classification: 06F35, 03B45, 03G25.

Keywords: GT-algebra, (normal) GT-filter, homomorphism.

1 Introduction

The variety of Tarski algebras was introduced by J. C. Abbott in [2]. These algebras are an algebraic counterpart of the \(\{ \lor, \rightarrow \} \)-fragment of the propositional classical calculus. S. A. Celani ([5]) introduced Tarski algebras with

*Corresponding author. Tel.: +82 55 740 1232
a modal operator as a generalization of the concept of Boolean algebra with
a modal operator which he researched into these fragments of the algebraic
viewpoint. Properties of filters in Tarski algebras were treated by S. A. Celani
([5]) and the authors ([6]). Recently, J. Kim, Y. Kim and E. H. Roh ([6])
considered decompositions and expansions of filters in Tarski algebras, and
also they have shown that there is no non-trivial quadratic Tarski algebras on
a field X with $|X| \geq 3$. However, we feel that the concept of Tarski algebra
is relatively too strong for filters. Kim et al. ([7]) established a new algebra,
called a GT-algebra, which is a generalization of Tarski algebra, and gave a
method to construct a GT-algebra from a quasi-ordered set. In this paper,
we introduce the notion of normal GT-filters in GT-algebras, and we estab-
ish construct the quotient GT-algebras via normal GT-filter, and we have the
fundamental theorem of homomorphisms for GT-algebras as a consequence.

2 Preliminary Notes

Let us review some definitions and results.

Definition 2.1. [7] By a generalized Tarski algebra (GT-algebra, for short)
we mean an algebra $(X; \rightarrow, 1)$ of type $(2, 0)$ satisfying the following conditions:

(T1) $(\forall a \in X)(1 \rightarrow a = a)$.

(T2) $(\forall a \in X)(a \rightarrow a = 1)$.

(T3) $(\forall a, b, c \in X)(a \rightarrow (b \rightarrow c) = (a \rightarrow b) \rightarrow (a \rightarrow c))$.

Given a GT-algebra X, if it satisfies the condition

(T4) $(\forall a, b \in X)((a \rightarrow b) \rightarrow b = (b \rightarrow a) \rightarrow a)$,

we call the algebra a Tarski algebra. In a Tarski algebra X we can define an
order relation \leq by setting $a \leq b$ if and only if $a \rightarrow b = 1$ for any $a, b \in X$.
Note that $(X; \leq)$ is a poset ([3]).

A reflexive and transitive relation \mathcal{R} on a set X is called a quasi-ordering
of X, and the couple (X, \mathcal{R}) is called a quasi-ordered set ([4]). Note that if X
is a GT-algebra, then the relation \leq by setting $x \leq y$ if and only if $x \rightarrow y = 1$
for any $a, b \in X$ is a quasi-ordering of X; with respect to this quasi-ordering 1
is the greatest element of X ([8]).

Example 2.2. [8] Let $X := \{a, b, c, 1\}$ be a set with the following Cayley
table:

<table>
<thead>
<tr>
<th>\rightarrow</th>
<th>a</th>
<th>b</th>
<th>c</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>1</td>
<td>1</td>
<td>c</td>
<td>1</td>
</tr>
<tr>
<td>b</td>
<td>1</td>
<td>1</td>
<td>c</td>
<td>1</td>
</tr>
<tr>
<td>c</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>a</td>
<td>b</td>
<td>c</td>
<td>1</td>
</tr>
</tbody>
</table>
Then \((X; \to, 1)\) is a GT-algebra and
\[
\mathcal{R} := \{(a, a), (a, b), (a, 1), (b, a), (b, b), (b, 1), (c, a), (c, b), (c, c), (c, 1), (1, 1)\}
\]
is a quasi-ordering of \(X\), which is not an anti-symmetric relation of \(X\).

Lemma 2.3. [7] Let \(X\) be a GT-algebra. Then

\[(p1) \ (\forall a \in X)(a \leq 1).\]

\[(p2) \ (\forall a, b \in X)(a \leq b \to a).\]

\[(p3) \ (\forall a, b \in X)(a \to (a \to b) = a \to b).\]

\[(p4) \ (\forall a, b \in X)(a \leq (a \to b) \to b).\]

\[(p5) \ (\forall a, b, c \in X)(a \leq b \Rightarrow c \to a \leq c \to b).\]

Definition 2.4. [7] Let \(X\) be a GT-algebra. A nonempty subset \(F\) of \(X\) is called a GT-filter of \(X\) if it satisfies the following conditions:

\[(F1) \ (\forall a, b \in X)(b \in F \Rightarrow a \to b \in F).\]

\[(F2) \ (\forall a, b \in X)(a \to b \in F, a \in F \Rightarrow b \in F).\]

Theorem 2.5. [7] Let \(F\) be a nonempty subset of a GT-algebra \(X\). Then \(F\) is a GT-filter of \(X\) if and only if it satisfies \(1 \in F\) and \((F2)\).

Let \(\mathcal{R}\) be a relation on a GT-algebra \(X\). Then \(\mathcal{R}\) is said to be compatible if \((a \to e, b \to f) \in \mathcal{R}\) whenever \((a, b) \in \mathcal{R}\) and \((e, f) \in \mathcal{R}\) for all \(a, b, e, f \in X\). A compatible equivalence relation on \(X\) is said to be a congruence on \(X\).

Let \(X\) be a GT-algebra and \(K(\neq \emptyset) \subseteq X\). Denote by \(\Theta_K\) the relation on \(X\) given by

\[(a, b) \in \Theta_K \text{ iff } a \to b \in K \text{ and } b \to a \in K.\]

Theorem 2.6. [7] Let \(K\) be a GT-filter of a GT-algebra \(X\). Then the relation \(\Theta_K\) is an equivalence relation on \(X\) and \([1]_{\Theta_K} = K\).

In Theorem 2.6, \(\Theta_K\) may not be compatible in general, as the following example.
Example 2.7. [7] Let $X := \{a, b, c, d, 1\}$ be a set with the following Cayley table:

\[
\begin{array}{ccccccc}
\rightarrow & a & b & c & d & e & f & g & 1 \\
\hline
a & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
b & c & 1 & c & g & 1 & 1 & g & 1 \\
c & f & f & 1 & f & 1 & f & 1 & 1 \\
d & c & e & c & 1 & e & 1 & 1 & 1 \\
e & a & f & c & d & 1 & f & g & 1 \\
f & c & e & c & g & e & 1 & g & 1 \\
g & a & b & c & f & e & f & 1 & 1 \\
1 & a & b & c & d & e & f & g & 1 \\
\end{array}
\]

Then $(X; \rightarrow, 1)$ is a GT-algebra, and the subset $K := \{d, 1\}$ is a GT-filter of X. Moreover, we can find

$\Theta_K = \{(a, a), (b, b), (c, c), (d, d), (e, e), (e, 1), (f, f), (g, g), (1, e), (1, 1)\}$.

It is routine to check that Θ_K is an equivalence relation on X, which is not compatible since $(e, 1) \in \Theta_K$ and $(b, b) \in \Theta_K$, but $(e \rightarrow b, 1 \rightarrow b) = (f, b) \notin \Theta_K$.

3 Main Results

Definition 3.1. A GT-filter F of a GT-algebra X is said to be normal if it satisfies:

(F3) $(\forall a, b, c \in X)(a \rightarrow b \in F \Rightarrow (b \rightarrow c) \rightarrow (a \rightarrow c) \in F)$.

Obviously, X and $\{1\}$ are normal GT-filters of X.

Example 3.2. Let $X := \{a, b, c, 1\}$ be a set with the following Cayley table:

\[
\begin{array}{ccc}
\rightarrow & a & b & c & 1 \\
\hline
a & 1 & b & 1 & 1 \\
b & a & 1 & 1 & 1 \\
c & a & b & 1 & 1 \\
1 & a & b & c & 1 \\
\end{array}
\]

It is easy to check that $(X; \rightarrow, 1)$ is a GT-algebra, and $\{c, 1\}, \{a, c, 1\}, \{b, c, 1\}$ are normal GT-filters of X. But $F := \{a, 1\}$ is not a normal GT-filter of X since $1 \rightarrow a \in F$ and $(a \rightarrow c) \rightarrow (1 \rightarrow c) = c \notin F$.
Now we construct the quotient GT-algebras via normal GT-filters. Let K be a normal GT-filter of a GT-algebra $(X; \rightarrow, 1)$. Then we obtain from Theorem 2.6 that Θ_K is an equivalence relation on X and $[1]_{\Theta_K} = K$.

Let $a, b, c, d \in X$ such that $(a, b) \in \Theta_K$ and $(c, d) \in \Theta_K$. Then we have $a \rightarrow b \in K$ implies $(a \rightarrow c) \rightarrow (b \rightarrow c) \in K$, and $b \rightarrow a \in K$ implies $(b \rightarrow c) \rightarrow (a \rightarrow c) \in K$. Thus we get

$$(a \rightarrow c, b \rightarrow c) \in \Theta_K.$$

Since $c \rightarrow d \in K$ implies $(b \rightarrow c) \rightarrow (b \rightarrow d) \in K$, and $d \rightarrow c \in K$ implies $(b \rightarrow d) \rightarrow (b \rightarrow c) \in K$. Hence we have

$$(b \rightarrow c, b \rightarrow d) \in \Theta_K.$$

We conclude that $(a \rightarrow c, b \rightarrow d) \in \Theta_K$. Therefore Θ_K is a congruence relation on X.

Denote the equivalence class containing a by $[a]_{\Theta_K}$, i.e.,

$$[a]_{\Theta_K} := \{ x \in X | (a, x) \in \Theta_K \}.$$

We note that $(a, b) \in \Theta_K$ if and only if $[a]_{\Theta_K} = [b]_{\Theta_K}$.

Denote $X/\Theta_K := \{ [a]_{\Theta_K} | a \in X \}$ and define

$$[a]_{\Theta_K} \rightarrow' [b]_{\Theta_K} := [a \rightarrow b]_{\Theta_K}.$$

The operation “\rightarrow'” is well-defined, since Θ_K is a congruence relation on X. We claim that $(X/\Theta_K; \rightarrow', [1]_{\Theta_K})$ is a GT-algebra. Clearly

$$[1]_{\Theta_K} \rightarrow' [a]_{\Theta_K} = [a]_{\Theta_K} \quad \text{and} \quad [a]_{\Theta_K} \rightarrow' [a]_{\Theta_K} = [1]_{\Theta_K}$$

for all $[a]_{\Theta_K} \in X/\Theta_K$. Let $[a]_{\Theta_K}, [b]_{\Theta_K}, [c]_{\Theta_K} \in X/\Theta_K$. Then we have

$$[a]_{\Theta_K} \rightarrow' ([b]_{\Theta_K} \rightarrow' [c]_{\Theta_K}) = [a \rightarrow (b \rightarrow c)]_{\Theta_K} = [(a \rightarrow b) \rightarrow (a \rightarrow c)]_{\Theta_K} = ([a]_{\Theta_K} \rightarrow' [b]_{\Theta_K}) \rightarrow' ([a]_{\Theta_K} \rightarrow' [c]_{\Theta_K}).$$

We summarize:

Theorem 3.3. Let K be a normal GT-filter of a GT-algebra $(X; \rightarrow, 1)$. If we define

$$[a]_{\Theta_K} \rightarrow' [b]_{\Theta_K} := [a \rightarrow b]_{\Theta_K}$$

for all $a, b \in X$, then $(X/\Theta_K; \rightarrow', [1]_{\Theta_K})$ is a GT-algebra, which is called the quotient GT-algebra via K.
Now, we state a fundamental theorem of a homomorphism.

Definition 3.4. Let X, Y be GT-algebras. A mapping $f : X \to Y$ is called an homomorphism if

$$(\forall a, b \in X)(f(a \rightarrow b) = f(a) \rightarrow f(b)).$$

A homomorphism f is called a monomorphism (resp., epimorphism) if it is injective (resp., surjective). A bijective homomorphism is called an isomorphism. Two GT-algebras X and Y are said to be isomorphic, written $X \cong Y$, if there exists an isomorphism $f : X \to Y$. For any homomorphism $f : X \to Y$, the set $\{a \in X|f(a) = 0\}$ is called the kernel of f, denoted by $\text{Ker}(f)$ and the set $\{f(a)|a \in X\}$ is called the image of f, denoted by $\text{Im}(f)$.

Example 3.5. Let $X := \{a, b, 1\}$ and $Y := \{x, 1\}$ be GT-algebras, whose Cayley tables are as follows.

$$
\begin{array}{c|ccc}
 & a & b & 1 \\
\hline
a & 1 & 1 & 1 \\
b & a & 1 & 1 \\
1 & a & b & 1 \\
\end{array}
\quad
\begin{array}{c|cc}
 & x & 1 \\
\hline
x & 1 & 1 \\
1 & x & 1 \\
\end{array}
$$

Define a mapping $f : X \to Y$ by $a \mapsto x, b \mapsto 1, 1 \mapsto 1$. It can be readily check that f is a homomorphism from a GT-algebra X to a GT-algebra Y.

Example 3.5 shows that the cardinal number of a homomorphic image of a finite GT-algebra may not be a factor of the cardinal number of the domain. Obviously, $|X| = 3$ and $|Y| = 2$, but 2 is not factor of 3.

Lemma 3.6. Let $f : X \to Y$ be a homomorphism from a GT-algebra X to a GT-algebra Y. Then

(i) $f(1) = 1$.

(ii) $(\forall a, b \in X)(a \leq b \Rightarrow f(a) \leq f(b))$.

Proof. Straightforward.

The next proposition satisfies an ordinary algebraic homomorphism, whose verification is routine and omitted.

Lemma 3.7. Let $f : X \to Y$ be a homomorphism from a GT-algebra X to a GT-algebra Y. Then

(i) f is epimorphic if and only if $\text{Im}(f) = Y$

(ii) f is monomorphic if and only if $\text{Ker}(f) = \{1\}$
(iii) \(f \) is isomorphic if and only if the inverse mapping \(f^{-1} : Y \to X \) is isomorphic.

Theorem 3.8. Let \(f : X \to Y \) be a homomorphism from a GT-algebra \(X \) onto a Tarski algebra \(Y \). Then \(\text{Ker}(f) \) is a normal GT-filter of \(X \).

Proof. Obviously, \(1 \in \text{Ker}(f) \). Let \(a \to b \in \ker(f) \) and \(a \in \text{ker}(f) \). Then \(1 = f(a \to b) = f(a) \to f(b) = 1 \to f(b) = f(b) \). Hence \(b \in \text{ker}(f) \). Let \(a \to b \in \text{ker}(f) \) Then for any \(c \in X \), we have
\[
f((b \to c) \to (a \to c)) = 1.
\]
Hence we obtain \((b \to c) \to (a \to c) \in \text{Ker}(f) \). Therefore \(\text{ker}(f) \) is a normal GT-filter of \(X \).

In Example 3.5, \(X \) is a GT-algebra, which is not a Tarski algebra since \((a \to b) \to b \neq (b \to a) \to a \), and \(Y \) is a Tarski algebra, and \(f \) is an epimorphism. Obviously, \(\text{Ker}(f) = \{b, 1\} \) is a normal GT-filter of \(X \).

Theorem 3.9. (Homomorphism Theorem) If \(f : X \to Y \) is a homomorphism from a GT-algebra \(X \) onto a Tarski algebra \(Y \), then the quotient GT-algebra \(X/\Theta_{\text{Ker}(f)} \) and \(Y \) are isomorphic, i.e., \(X/\Theta_{\text{Ker}(f)} \cong Y \).

Proof. Define a mapping
\[
\mu : X/\Theta_{\text{Ker}(f)} \to Y \text{ by } \mu([a]_{\Theta_{\text{Ker}(f)}}) = f(a).
\]
If \([a]_{\Theta_{\text{Ker}(f)}} = [b]_{\Theta_{\text{Ker}(f)}}\), then \(a \to b, b \to a \in \text{Ker}(f) \), and so we get
\[
f(a) \to f(b) = 1 = f(b) \to f(a)
\]
in \(Y \). Thus we have \(f(a) = f(b) \), i.e., \(\mu([a]_{\Theta_{\text{Ker}(f)}}) = \mu([b]_{\Theta_{\text{Ker}(f)}}) \). This means that \(\mu \) is well-defined. Let \([a]_{\Theta_{\text{Ker}(f)}} = [b]_{\Theta_{\text{Ker}(f)}} \in X/\Theta_{\text{Ker}(f)} \) with \([a]_{\Theta_{\text{Ker}(f)}} \neq [b]_{\Theta_{\text{Ker}(f)}}\). Then \((a, b) \notin \Theta_{\text{Ker}(f)}\), and hence
\[
either \ a \to b \notin \text{Ker}(f) \ or \ b \to a \notin \text{Ker}(f)\).
\]
Without loss of generality, we may assume \(a \to b \notin \text{Ker}(f) \). It follows that \(f(a) \to f(b) = f(a \to b) \neq 1 \), and hence \(f(a) \neq f(b) \). This means that \(\mu \) is one-one. For any \(b \in Y \), there is an \(a \in X \) such that \(b = f(a) \), since \(f \) is onto. Hence \(\mu([a]_{\Theta_{\text{Ker}(f)}}) = f(a) = b \), which means that \(\mu \) is onto. Since
\[
\mu([a]_{\Theta_{\text{Ker}(f)}} \to [b]_{\Theta_{\text{Ker}(f)}}) = \mu([a \to b]_{\Theta_{\text{Ker}(f)}})
= f(a \to b)
= f(a) \to f(b)
= \mu([a]_{\Theta_{\text{Ker}(f)}}) \to \mu([b]_{\Theta_{\text{Ker}(f)}}),
\]
\(\mu \) is a homomorphism. Thus we obtain \(X/\Theta_{\text{Ker}(f)} \cong Y \), completing the proof. \(\square \)
Theorem 3.10. Let X and Y be GT-algebras and Z be a Tarski algebra, and let $h: X \rightarrow Y$ be an epimorphism and $g: X \rightarrow Z$ be a homomorphism. If $\text{Ker}(h) \subseteq \text{Ker}(g)$, then there is a unique homomorphism $f: Y \rightarrow Z$ satisfying $f \circ h = g$.

Proof. For any $b \in Y$, there exists an $a \in X$ such that $b = h(a)$. Given an element a, we put $c := g(a)$. Define a mapping

$$f: Y \rightarrow Z$$

such that $f(b) = c$. To prove that f is well-defined and $f \circ h = g$. If $b = h(a_1) = h(a_2), a_1, a_2 \in X$, then $0 = h(a_1) \rightarrow h(a_2) = h(a_1) \rightarrow a_2$. Hence $a_1 \rightarrow a_2 \in \text{Ker}(h)$. Since $\text{Ker}(h) \subseteq \text{Ker}(g)$, we have $0 = g(a_1) \rightarrow a_2 = g(a_1) \rightarrow a_2$. Similarly, we get $g(a_2) \rightarrow a_1 = 0$. Thus $g(a_2) = g(a_1)$. This means that f is well-defined. Clearly $g(a) = f(h(a))$ for any $a \in X$. To show that f is a homomorphism. Let $b_1, b_2 \in Y$. For any $a_1, a_2 \in X$ such that $b_1 = h(a_1), b_2 = h(a_2)$, we have $f(b_1 \rightarrow b_2) = f(h(a_1) \rightarrow h(a_2)) = f(h(a_1) \rightarrow a_2)) = g(a_1) \rightarrow a_2 = g(a_1) \rightarrow g(a_2) = f(h(a_1)) \rightarrow f(h(a_2)) = f(b_1) \rightarrow f(b_2)$. Hence f is a homomorphism. The uniqueness of f follows directly from the fact that h is an epimorphism. \square

Theorem 3.11. Let X, Y and Z be GT-algebras, and let $g: X \rightarrow Z$ be a homomorphism and $h: Y \rightarrow Z$ be a monomorphism with $\text{Im}(g) \subseteq \text{Im}(h)$, then there is a unique homomorphism $f: X \rightarrow Y$ satisfying $h \circ f = g$.

Proof. For each $a \in X$, $g(a) \subseteq \text{Im}(g) \subseteq \text{Im}(h)$. Since h is a monomorphism, there exists a unique $b \in Y$ such that $h(b) = g(a)$. Define a map

$$f: X \rightarrow Y$$

such that $f(a) = b$. Then $h \circ f = g$. We show that f is a homomorphism. If $a_1, a_2 \in X$, then $g(a_1 \rightarrow a_2) = h(f(a_1 \rightarrow a_2))$. On the other hand, since g is a homomorphism, $g(a_1 \rightarrow a_2) = g(a_1) \rightarrow a_2 = h(f(a_1)) \rightarrow h(f(a_2)) = h(f(a_1) \rightarrow f(a_2))$. Hence $h(f(a_1 \rightarrow a_2)) = h(f(a_1) \rightarrow f(a_2))$. Since h is a monomorphism, we have $f(a_1 \rightarrow a_2) = f(a_1) \rightarrow f(a_2)$. The uniqueness of f follows from the fact that h is a monomorphism. \square

ACKNOWLEDGEMENTS.

This work was done during the second author’s stay for the academic year 2007-2008 at the Jacksonville State University in Alabama, USA. The second author is highly grateful to the Department of Mathematics, Computing and Information Sciences of Jacksonville State University for their supporting.
References

Received: March 26, 2008