Demonstration of the Fermat’s Little Theorem in Context of the Burnside Rings

Kenneth K. Nwabueze

Department of Mathematics, Faculty of Science, Universiti Brunei Darussalam, BE 1410, Gadong, Brunei nwabueze@fos.ubd.edu.bn, kknwabueze@hotmail.com

Abstract

We demonstrate proof of the Fermat’s little theorem in the context of the Burnside ring.

1 The Burnside ring of finite groups

The Burnside ring \(B(G) \) of a finite group \(G \) is the Grothendieck ring of finite \(G \)-sets. It is generated as an algebra over \(\mathbb{Z} \) by the isomorphism classes of finite (left) \(G \)-sets \(S, T, \cdots \), subject to the relations

\[
\begin{align*}
S - T &= 0, \text{ if } S \cong T, \\
S + T - (S \cup T) &= 0, \\
S \cdot T - (S \times T) &= 0
\end{align*}
\]

Therefore, the elements of \(B(G) \) are the virtual \(G \)-sets; that is, the formal differences \(S - T \) of isomorphism classes of \(G \)-sets \(S, T \); (see [1], [3]). For reader’s convenience, we start by writing down some of the notations used in this paper.

Notation 1.1 Let \(H, K \) be subgroups of a finite group \(G \). We say that \(H \) and \(K \) are \(G \)-conjugate and write \(H \sim_G K \) if \(g^{-1}Hg = K \) for some \(g \in G \). If \(g^{-1}Hg \subseteq K \) for some \(g \in G \), we write \(H \preceq_G K \), and say that \(H \) is \(G \)-subconjugate to \(K \). We denote the set of \(G \)-invariant subset of a \(G \)-set \(S \) by

\[
\text{Fix}_G(S) := \{ s \in S \mid gs = s \ \forall \ g \in G \};
\]

in particular, for \(K \leq G \), we have that

\[
\text{Fix}_H(G/K) = \{ gK \mid g \in G, \ g^{-1}Hg \leq K \}.
\]
The following results are well known (see [1], [3]).

Proposition 1.1 Let \(H \) and \(K \) be subgroups of \(G \), and let \(S \) be any \(G \)-set. Then

(i) there exists a bijection \(\text{Hom}_G(G/H, G/K) \leftrightarrow \text{Fix}_H(S) \),

(ii) there exists a bijection \(\text{Hom}_G(G/H, G/K) \leftrightarrow \text{Fix}_H(G/K) \),

(iii) \(\text{Fix}_H(G/K) = \emptyset \) unless \(G \unlhd K \),

(iv) \(G/H \cong G/K \) as \(G \)-sets if and only if \(H \sim G K \).

The above proposition implies that if \(S = S(G) \) is a full set of nonconjugate subgroups of \(G \), then the \(G \)-sets \(\{ G/H \mid H \in S \} \) form a \(\mathbb{Z} \)-basis of \(B(G) \), that is

\[
B(G) = \sum_{H \in S} \mathbb{Z} [G/H].
\]

Furthermore, for every subgroup \(H \) of \(G \), the \(G \)-set \(G/H \) is transitive and every transitive \(G \)-set is isomorphic to one of this form. Now, because every \(G \)-set decomposes uniquely into a disjoint union of transitive \(G \)-sets, every element \([S] \in B(G) \) can be written as a linear combination of the form

\[
[S] = \sum_{H \leq G} m_H([S])G/H
\]

with uniquely determined integral coefficients \(m_H[S] \in \mathbb{Z} \), satisfying \(m_H([S]) = m_K([S]) \) if \(H \unlhd G K \).

2 A canonical homomorphism

If \(S \) and \(T \) are \(G \)-sets, then clearly we have for every subgroup \(H \leq G \), that

\[
\text{Fix}_H(S \cup T) = \text{Fix}_H(S) \cup \text{Fix}_H(T),
\]

\[
\text{Fix}_H(S \times T) = \text{Fix}_H(S) \times \text{Fix}_H(T).
\]

Therefore, we can define a ring homomorphism

\[
\phi_H := \{ \phi_H \mid H \leq G \} : B(G) \to \mathbb{Z}
\]

induced by the map

\[
S \to \phi_H(S) := |\text{Fix}_H(S)|.
\]

\(^{1}\)we have used the summation symbol in the form \(\sum' \) (that is, with a prime attached) to indicate that the sum extends only over a system of representatives of conjugacy classes of subgroups of \(G \).
Furthermore, if H and K are G-conjugate then $\phi_H = \phi_K$ because if $g \in G$ and S is any G-set then $s \in Fix_H(S)$ if and only if $gs \in Fix_{gHg^{-1}}(S)$. Note that for the trivial subgroup $1_G := 1$ of G, we have

$$\phi_1(S) = \text{cardinality of } S.$$

If we put $K = H$ in proposition 1.1(ii), we get

$$\phi_H[G/H] = |N_G(H) : H|,$$

where $N_G(H)$ is the normalizer of H in G.

3 The ghost ring

The following well known result (see [3]) shows that the set of ring homomorphisms ϕ_H from $B(G)$ to \mathbb{Z} distinguish the elements of the Burnside ring $B(G)$ from one another.

Theorem 3.1 Let S,T be G-sets, and let S be a full set of nonconjugate subgroups of G. Then $S \cong T$ if and only if $\phi_H(S) = \phi_H(T)$ for all $H \in S$.

Observe that for each $[S] \in B(G)$, the map $H \to (H \to \phi_H([S]))$ from the set of subgroups of G into \mathbb{Z} induces a homomorphism

$$\phi_H : B(G) \to \tilde{B}(G) : [S] \to (H \to \phi_H([S]))$$

from the Burnside ring $B(G)$ into its *ghost ring*

$$\tilde{B}(G) := \mathbb{Z}^{\mathbb{S}/\sim}$$

of G, consisting of all maps from all subgroups of G into \mathbb{Z} which are constant on each conjugacy class of subgroups of G. It is obvious that this homomorphism is injective [3] and so we can regard the Burnside ring $B(G)$, in a canonical way, as a subring of the ghost ring $\tilde{B}(G)$.

4 Cauchy-Frobenius-Burnside relations

The following result, called the Cauchy-Frobenius-Burnside relations is well known [3].

Theorem 4.1 Let G be a finite group. Then for every $[S] \in B(G)$, we have the congruence relation

$$\sum_{g \in G} \phi_{\langle g \rangle}([S]) \equiv 0 \pmod{|G|}.$$
Finally, note that because we have the unique representation

\[[S] = \sum_{H \leq G} m_H([S])G/H \]

for every \([S] \in B(G)\), it follows that in the case where \(G\) is a \(p\)-group, we have

\[\phi_1([S]) = \sum_{H \leq G} m_H([S])\phi_H(G/H) \equiv m_G([S]) = \phi_G([S]) \pmod p. \]

5 Fermat’s Little theorem

The Fermat little theorem (see [2]) is the statement of the next theorem and we now demonstrate its proof using the Burnside ring oriented approach.

Theorem 5.1 (Fermat): Let \(n \geq 1\) be any integer and \(p\) a prime. Then \(n^p \equiv n \pmod p\).

Proof: Let \(G\) denote a cyclic group of order \(p\), and for \(n \in \mathbb{N} (n \geq 1)\), let \(N := \{1, \ldots, n\}\) be a set of integers from 1 to \(n\). Set \(S = N^p\), and let \(G\) act on \(S\) by cyclic permutation of entries of an element in \(S\). It is obvious that \(S\) with this action is a \(G\)-set of cardinality \(n^p\). Furthermore \((a_1, a_2, \cdots a_p) \in S\) is in \(Fix_G(S)\) if and only if \(a_1 = a_2 = \cdots = a_p\); and so \(|Fix_G(S)| = n\). Write \([S] = \sum_{H \leq G} n_H G/H\). Now we apply \(\phi_1\) to \([S]\) to derive

\[n^p = \phi_1([S]) = \phi_1 \left(\sum_{H \leq G} n_H([S])G/H \right) = \sum_{H \leq G} n_H([S])(G : H) \equiv n_G([S]) = \phi_G([S]) \pmod p = n \pmod p. \]

That is, \(n^p \equiv n \pmod p\) for all \(n \in \mathbb{N}\). Now, because \((-1)^p \equiv -n^p\), we have that \(n^p \equiv n \pmod p\) for all \(n \in \mathbb{Z}\).

Corollary 5.1 If \(n \geq 1\) is an integer and \(p\) a prime, then \(n^{p^k} \equiv n \pmod p\) for all \(k \geq 1\).

Proof: Repeat the argument in the proof of theorem 5.1, by setting \(S = N^{p^k}\) and allowing a cyclic group of order \(p^k\) to act cyclically on \(S\).
References

Received: August 7, 2007