Trace Inequalities in Banach Algebras

Abdelaziz Maouche

Department of Mathematics, College of Science
Sultan Qaboos University, P.O.Box 36 Al-Khoud PC 123
Muscat, Sultanate of Oman
maouche@squ.edu.om

Abstract
In this note we use a new analytic and spectrally defined trace on the socle of a complex semisimple Banach algebra to establish some trace inequalities previously known on matrices.

Mathematics Subject Classification: 15A15, 15A60, 46H99

Keywords: Banach algebra, determinant, socle, trace

1 Introduction

The purpose of this note is twofold. Firstly it acknowledges the new analytic definition of the trace on general elements of a Banach algebra, which has been introduced and used in [1] and [2]. In particular, this trace coincides with the standard trace when we restrict to the algebra of matrices $M_n(\mathbb{C})$ or the algebra of bounded operators $B(X)$ on a Banach space X. Secondly, we use this new spectrally defined trace to extend some results previously obtained for matrices and compact operators (see [3 - 6]) to elements of the socle of a Banach algebra.

In [1] it is shown that the trace and the determinant on a semisimple Banach algebra A can be defined in a purely spectral and analytic way. In fact these two notions are well defined on the socle of A, denoted $\text{Soc}(A)$, and which is by definition the sum of all minimal left ideals (or minimal right ideals) of A. It is well known that the socle is a two sided algebraic ideal, then in particular all its elements have finite spectrum. Of course, if A is finite-dimensional, it coincides with its socle, and if $A = B(X)$, then $\text{Soc}(A) = \mathcal{F}(X)$ (the ideal of finite rank operators), in this case it coincides with the ideal of compact operators $\mathcal{K}(X)$.

We consider a unital complex Banach algebra A. Let $a \in A$ such that $\text{Sp}(a)$ is finite. Take $\alpha \in \text{Sp}(a), \alpha \neq 0$. Then α is isolated in $\text{Sp}(a)$. We consider a
circle \(\gamma \) surrounding \(\alpha \) and separating \(\alpha \) from the rest of the spectrum of \(a \). We design by \(\Delta \) the interior of \(\gamma \). Now, we define \(m(\alpha, a) \), the multiplicity of \(a \) at \(\alpha \) as \(\#(\text{Sp}(ax) \cap \Delta) \), \(x \in A \) where \(\# \) means the number of points. We define the rank of an element \(a \in A \) as follows:

\[
\text{rank}(a) = \sup_{x \in A} \#\text{Sp}(ax) \setminus \{0\} = \sup_{x \in A} \text{Sp}(ax) \setminus \{0\}.
\]

For matrices, this new definition of the rank has been used by L. Baribeau and S. Roy to get a new spectral characterization of the Jordan form of a matrix \(a \) by examining the characteristic polynomial of the perturbed matrices \(ta + X \).

Proposition 1.1 Let \(a \in M_n(\mathbb{C}) \), then

\[
\text{rank}(a) = \max_{X \in M_n(\mathbb{C})} \deg \det(ta + X),
\]

where \(\deg \) denotes the degree with respect to the variable \(t \).

Proof. Suppose \(\text{rank}(a) = r \), i.e. using the Gauss elimination method to the rows of \(a \), one can produce \(n - r \) rows of zeros. Applying the same operations to the rows of \(a + X \), then the corresponding rows in \(ta + x \) do not contain the variable \(t \), while the other rows contain polynomials of degree less or equal to 1 in \(t \). Since the determinant stays unchanged by these operations, this means that \(\det(ta + X) \leq r \). If \(a \) is upper triangular with the pivots on the main diagonal, then choosing \(X \) with zero entries everywhere, except at zero pivot positions of \(a \), where we put 1’s we obtain \(\deg \det(ta + X) = r \). In the general case, we can make \(a \) triangular by multiplying it from the left by an invertible matrix \(S \). Since \(\det(ta + X) = \det(S^{-1}) \det(tSa + X) \), it follows from the previous case that

\[
\max_{X \in M_n(\mathbb{C})} \deg \det(ta + X) = r. \quad \blacksquare
\]

If \(a \in \text{Soc}(A) \) we define the trace of \(a \) by

\[
\text{Tr}(a) = \sum_{\lambda \in \text{Sp}a} \lambda m(\lambda, a),
\]

and the determinant of \(1 + a \) by

\[
\text{Det}(1 + a) = \prod_{\lambda \in \text{Sp}a} (1 + \lambda)^{m(\lambda, a)}.
\]

With these definitions the trace has some nice properties. We prove the most important of them in the next theorem (see [1] and [2] for more details).
Theorem 1.1 Let A be a semisimple complex Banach algebra. If f is an analytic function from a domain \mathbb{D} of \mathbb{C} into the socle of A, then $\text{Tr}(f(\lambda))$ is holomorphic on \mathbb{D}.

Proof. By the scarcity theorem there exists a closed discrete subset $E \subset \mathbb{D}$ and an integer n such that $\# \text{Sp}(f(\lambda)) = n$ for $\lambda \in \mathbb{D}\setminus E$ and $\# \text{Sp}(f(\lambda)) < n$ for $\lambda \in E$. If $\lambda_0 \in \mathbb{D}\setminus E$, then $\text{Sp}(f(\lambda_0)) = \{\alpha_1, \cdots, \alpha_n\}$. Choose $\epsilon > 0$, such that $B(\alpha_i, \epsilon) \cap B(\alpha_j, \epsilon) = \emptyset$ for $i \neq j$. By continuity of the spectrum on the socle, there exists $\delta > 0$ such that $|\lambda - \lambda_0| < \delta \Rightarrow \text{Sp}(f(\lambda)) \subset B(\alpha_i, \epsilon) \cup \cdots \cup B(\alpha_n, \epsilon)$, for $\lambda \in \mathbb{D}\setminus E$, and $\#(\text{Sp}(f(\lambda)) \cap B(\alpha_i, \epsilon)) = \{\alpha_i(\lambda)\}$. It is known that $\alpha_i(\lambda)$ is locally holomorphic. Choosing δ small enough, the Riesz projections $p(\alpha_i(\lambda), f(\lambda))$ and $p(\alpha_i, f(\lambda_0))$ are equivalent, so $m(\alpha_i(\lambda), f(\lambda)) = m(\alpha_i, f(\lambda_0))$. This combined with the local holomorphy of the spectral values $\alpha_i(\lambda)$ yield that $\text{Tr}(f(\lambda))$ and $\det(1 + f(\lambda))$ are holomorphic on $\mathbb{D}\setminus E$.

If $\lambda_0 \in E$, then $\text{Sp}(f(\lambda_0)) = \{\alpha_1, \cdots, \alpha_m\}$ with $m < n$. Like before, choosing $\epsilon, \delta > 0$ such that $B(\alpha_i, \epsilon) \cap B(\alpha_j, \epsilon) = \emptyset$ for $i \neq j$, and for $|\lambda - \lambda_0| < \delta$, then $\text{Sp}(f(\lambda)) \subset B(\alpha_i, \epsilon) \cup \cdots \cup B(\alpha_m, \epsilon)$. As before, if δ is chosen small enough, then the Riesz projections $p(\partial B(\alpha_i, \epsilon), f(\lambda))$ and $p(\partial B(\alpha_i, \epsilon), f(\lambda_0))$ are equivalent for $i = 1, \cdots, m$. Consequently,

$$m(\alpha_i, f(\lambda_0)) = \sum_{\beta \in \text{Sp}(f(\lambda)) \cap B(\alpha_i, \epsilon)} m(\beta, f(\lambda)).$$

(4)

Now, this relation combined with the continuity of the spectrum on the socle yield the continuity of $\text{Tr}(f(\lambda))$ and $\det(1 + f(\lambda))$ at every point of E, and hence at every point of \mathbb{D}. We complete the proof by invoking Morera’s theorem to conclude that $\text{Tr}(f(\lambda))$ and $\det(1 + f(\lambda))$ are holomorphic on all of \mathbb{D}. ■

Corollary 1.2 If $x, y \in \text{Soc}(A)$, then $\text{Tr}(x + y) = \text{Tr}(x) + \text{Tr}(y)$.

Proof. By the previous theorem, $h(\lambda) = \text{Tr}(x + \lambda y)$ is an entire function, and

$$\lim_{|\lambda| \to \infty} \frac{h(\lambda)}{\lambda} = \lim_{|\lambda| \to \infty} \text{Tr}(\frac{x}{\lambda} + y) = \lim_{|\mu| \to 0} \text{Tr}(\mu x + y) = \text{Tr}(y)$$

(5)

because $\mu \mapsto \text{Tr}(\mu x + y)$ is continuous. By Liouville’s theorem, $h(\lambda)$ is a polynomial of degree one, and the result follows by simple identification of the coefficients. ■

The following theorem generalizes some results previously obtained for matrices and compact operators in [3 - 6].

Theorem 1.3 Let A be a unital semisimple complex Banach algebra with involution. If $a, b \in \text{Soc}(A)$, are such that $a = a^*$ and $b = b^*$, then:
1. \(\text{Tr}(ab) \leq \frac{1}{2}(\text{Tr} \ a^2 + \text{Tr} \ b^2). \)

2. \(\text{Tr}(ab) \leq \sqrt{\text{Tr} \ a^2} \cdot \sqrt{\text{Tr} \ b^2} \)

3. If in addition \(\text{Sp}(a) \subset \mathbb{R}^+ \) and \(\text{Sp}(b) \subset \mathbb{R}^+ \) then \(\text{Tr}(ab) \) is real.

Proof. Follows easily from the fact that

\[
0 \leq \text{Tr}(a + tb)^2 = \text{Tr}(a^2) + 2t \text{Tr}(ab) + t^2 \text{Tr}(b^2) \quad (6)
\]

for \(t \) real. \(\blacksquare \)

References

Received: July 28, 2007