On a New Hardy-Type Integral Inequality

Bicheng Yang

Department of Mathematics
Guangdong Education College
Guangzhou, Guangdong 510303, P. R. China
bcyang@pub.guangzhou.gd.cn

Abstract

In this paper, a new Hardy-type integral inequality with a best constant factor is considered.

Mathematics Subject Classifications: 26D15

Keywords: Hardy-type inequality, Hölder’s inequality

If $p > 0$, $r \neq 1$, $f(t) \geq 0$ and $0 < \int_0^\infty t^{-r}(tf(t))^p dt < \infty$, define the function $F(x)$ as

$$F(x) = \int_0^x f(t)dt, \text{ for } r > 1; \quad F(x) = \int_x^\infty f(t)dt, \text{ for } r < 1.$$ Then, (i) for $p > 1$, one has

$$\int_0^\infty x^{-r}F^p(x)dx < \left(\frac{p}{|r-1|} \right)^p \int_0^\infty t^{-r}(tf(t))^p dt; \quad (1)$$

(ii) for $0 < p < 1$, one has

$$\int_0^\infty x^{-r}F^p(x)dx > \left(\frac{p}{|r-1|} \right)^p \int_0^\infty t^{-r}(tf(t))^p dt, \quad (2)$$

where the constant factor $\left(\frac{p}{|r-1|} \right)^p$ in (1) and (2) are the best possible (see Hardy [1], and Hardy et al. [2, Th.330, Th.347]).

We call inequalities (1) and (2) the Hardy-type integral inequalities. They are important in analysis and its applications (see [3, 4]). Recently, Yang et
al. [5, 6] gave some generalizations of (1) for \(r = 0, p \), by introducing some parameters \(a \) and \(b \).

In this paper, we consider a new Hardy-type integral inequality with \(p < 0 \). That is

Theorem If \(p < 0, r \neq 1, f(t) \geq 0 \) and \(0 < \int_0^\infty t^{-r}(tf(t))^p dt < \infty \), define the function \(F(x) \) as

\[
F(x) = \int_0^x f(t) dt, \text{ for } r < 1; \quad F(x) = \int_x^\infty f(t) dt, \text{ for } r > 1.
\]

Then, one has

\[
\int_0^\infty x^{-r} F^p(x) dx < \left(\frac{-p}{r-1} \right)^p \int_0^\infty t^{-r}(tf(t))^p dt,
\]

where the constant factor \(\left(\frac{-p}{r-1} \right)^p \) is the best possible.

For showing the theorem, we need the following Hölder’s inequality:

If \(p < 0, \frac{1}{p} + \frac{1}{q} = 1, f(t), g(t) \geq 0, \) and \(f \in L^p(E), g \in L^q(E), \) then (see [7, p. 29])

\[
\int_E f(t) g(t) dt \geq \left(\int_E f^p(t) dt \right)^{1/p} \left(\int_E g^q(t) dt \right)^{1/q},
\]

where the equality holds if and only if there exists constants \(c \) and \(d \), such they are not all zero, that

\[
cf^p(t) = dg^q(t), \text{ a.e. in } E.
\]

Equivalently, one has from (4) that

\[
\left(\int_E f(t) g(t) dt \right)^p \leq \left(\int_E f^p(t) dt \right) \left(\int_E g^q(t) dt \right)^{p-1}.
\]

Lemma 1. If \(p < 0, r > 1, f(t) \geq 0 \) and \(0 < \int_0^\infty t^{-r}(tf(t))^p dt < \infty \), then

\[
\int_0^\infty x^{-r} \left(\int_0^x f(t) dt \right)^p dx < \left(\frac{p}{r-1} \right)^p \int_0^\infty t^{-r}(tf(t))^p dt,
\]

where the constant factor \(\left(\frac{p}{r-1} \right)^p \) is the best possible. In particular,

(i) for \(r = 0 \), one has

\[
\int_0^\infty \left(\int_0^x f(t) dt \right)^p dx < (-p)^p \int_0^\infty (tf(t))^p dt;
\]

(ii) for \(r = p \), one has

\[
\int_0^\infty \left(\frac{\int_0^x f(t) dt}{x} \right)^p dx < \left(\frac{p}{p-1} \right)^p \int_0^\infty f^p(t) dt;
\]
(iii) for \(r = 1 + p \), one has
\[
\int_0^\infty x^{-1} \left(\int_0^x \frac{f(t)dt}{x} \right)^p dx < \int_0^\infty t^{-1} f^p(t) dt, \tag{9}
\]
where the constant factors in the above inequalities are all the best possible.

Proof. By (5), we obtain
\[
\left(\int_0^x f(t) dt \right)^p = \left(\int_0^x \left(t^{\frac{1+p-r}{p}} f(t) \right) t^{-\frac{1+p-r}{p}} dt \right)^p \leq \int_0^x t^{\frac{1+p-r}{q}} f^p(t) dt \left(\int_0^x t^{-\frac{1+p-r}{p}} dt \right)^{p-1} = \left(\frac{p}{r-1} \right)^{p-1} x^{\frac{1}{p} + \frac{1}{r} - 1} \int_0^x t^{\frac{1+p-r}{q}} f^p(t) dt. \tag{10}
\]

We point that there exists \(x_0 > 0 \), such for any \(x > x_0 \), that the middle of (10) takes the form of strict inequality. Otherwise, setting \(x \to \infty \) in (10), by (4), there exists constants \(c \) and \(d \), such they are not all zero, that
\[
c t^{\frac{1+p-r}{q}} f^p(t) = dt^{-\frac{1+p-r}{p}}, \quad a.e. \quad (0, \infty).
\]
Since \(c \neq 0 \), then we find \(t^{-r} (t f(t))^p = \frac{d}{c} t^{-1}, \quad a.e. \quad (0, \infty) \), which contracts the fact that \(0 < \int_0^\infty t^{-r} (t f(t))^p dt < \infty \). Hence by (10), one has
\[
\int_0^\infty x^{-r} \left(\int_0^x f(t) dt \right)^p dx < \left(\frac{p}{r-1} \right)^{p-1} \int_0^\infty x^{\frac{1}{p} - 1} \int_0^x t^{\frac{1+p-r}{q}} f^p(t) dt dx \leq \left(\frac{p}{r-1} \right)^{p-1} \int_0^\infty \left(\int_t^\infty x^{\frac{1}{p} - 1} dx \right) t^{\frac{1+p-r}{q}} f^p(t) dt = \left(\frac{p}{r-1} \right)^p \int_0^\infty t^{-r} (t f(t))^p dt.
\]
Such we have (6).

For \(0 < \varepsilon < 1 - r \), setting \(f_\varepsilon(t) \) as:
\[
f_\varepsilon(t) = t^{\frac{-1+p-r}{p}} - 1, \quad for \ t \in (0, 1]; \ f_\varepsilon(t) = 0, \quad for \ t \in (1, \infty),
\]
then we find
\[
\int_0^\infty x^{-r} \left(\int_0^x f_\varepsilon(t) dt \right)^p dx = \frac{1}{\varepsilon} \left(\frac{p}{r - 1 + \varepsilon} \right)^p;
\]
\[
\int_0^\infty t^{-r} (t f_\varepsilon(t))^p dt = \frac{1}{\varepsilon}.
\]
If there exists \(r < 1 \), such that the constant factor \((\frac{p}{r-1})^p\) in (6) is not the best possible, then, there exists a constant \(k \), with \(k < (\frac{p}{r-1})^p \), such that (6) is still valid if one replaces \((\frac{p}{r-1})^p\) by \(k \). In particular, one has
\[
\int_0^\infty x^{-r}(\int_0^x f_\varepsilon(t)dt)^pdx < k\int_0^\infty t^{-r}(tf_\varepsilon(t))^pdt,
\]
and then
\[
\frac{1}{\varepsilon}\left(\frac{p}{r-1}\right)^p < k\frac{1}{\varepsilon}.
\]
It follows that \((\frac{p}{r-1})^p \leq k\), for \(\varepsilon \to 0 \). This contradiction follows that the constant factor \((\frac{p}{r-1})^p\) in (6) is the best possible.

The lemma is proved.

Lemma 2. If \(p < 0, r > 1, f(t) \geq 0 \) and \(0 < \int_0^\infty t^{-r}(tf(t))^pdt < \infty \), then
\[
\int_0^\infty x^{-r}(\int_x^\infty f(t)dt)^pdx < \left(\frac{p}{1-r}\right)^p\int_0^\infty t^{-r}(tf(t))^pdt,
\] (11)
where the constant factor \((\frac{p}{1-r})^p\) is the best possible. In particular,
(i) for \(r = 2 \), one has
\[
\int_0^\infty x^{-2}(\int_x^\infty f(t)dt)^pdx < (-p)^p\int_0^\infty t^{p-2}f^p(t)dt;
\] (12)
(ii) for \(r = 1 - p \), one has
\[
\int_0^\infty x^{p-1}(\int_x^\infty f(t)dt)^pdx < \int_0^\infty t^{2p-1}f^p(t)dt,
\] (13)
where the constant factors in the above inequalities are all the best possible.

Proof. By (5), we obtain
\[
(\int_x^\infty f(t)dt)^p = (\int_x^\infty (t^{1+p-r}f(t))(t^{-\frac{1+p-r}{p}})^pdt)^p
\leq \int_x^\infty t^{1+p-r-q}f^p(t)dt\left(\int_x^\infty t^{-\frac{1+p-r}{p}}dt\right)^{p-1}
= \left(\frac{p}{1-r}\right)^{p-1}x^{\frac{1+p-r}{p}+r-1}\int_x^\infty t^{\frac{1+p-r}{q}}f^p(t)dt.
\] (14)

We point that there exists \(x_0 > 0 \), such for any \(0 < x < x_0 \), that the middle of (14) takes the form of strict inequality. Otherwise, setting \(x \to 0 \) in (14), by (4), there exists constants \(c \) and \(d \), which are not all zero, such that
\[
ct^{\frac{1+p-r}{q}}f^p(t) = dt^{-\frac{1+p-r}{p}}, \text{ a.e. in } (0, \infty).
\]
New Hardy-type integral inequality

Since \(c \neq 0 \), then we find \(t^{-r}(tf(t))^p = \frac{4}{c}t^{-1} \), a.e. in \((0, \infty)\), which contracts the fact that \(0 < \int_0^\infty t^{-r}(tf(t))^p dt < \infty \). Hence by (14), one has

\[
\int_0^\infty x^{-r}(\int_x^\infty f(t)dt)^p dx < \left(\frac{p}{1-r}\right)^{p-1}\int_0^\infty x^{1-p-1}\int_x^\infty t^{1+\frac{p-r}{q}} f^p(t) dt dx
\]

\[
= \left(\frac{p}{1-r}\right)^{p-1}\int_0^\infty \left(\int_0^t x^{1-p-1}dx\right)t^{1+\frac{p-r}{q}} f^p(t) dt
\]

\[
= \left(\frac{p}{1-r}\right)^p \int_0^\infty t^{-r}(tf(t))^p dt.
\]

Such we have (11).

For \(0 < \varepsilon < r - 1 \), setting \(f_\varepsilon(t) \) as:

\[f_\varepsilon(t) = t^{\frac{-r-1}{p} - 1}, \text{ for } t \in [1, \infty); \ f_\varepsilon(t) = 0, \text{ for } t \in (0, 1), \]

then we find

\[
\int_0^\infty x^{-r}(\int_x^\infty f_\varepsilon(t)dt)^p dx = \frac{1}{\varepsilon}(\frac{p}{1-r+\varepsilon})^p;
\]

\[
\int_0^\infty t^{-r}(t f_\varepsilon(t))^p dt = \frac{1}{\varepsilon}.
\]

If there exists \(r > 1 \), such that the constant factor \(\left(\frac{p}{1-r}\right)^p \) in (11) is not the best possible, then, there exists a constant \(K \), with \(K < \left(\frac{p}{1-r}\right)^p \), such that (11) is still valid if one replaces \(\left(\frac{p}{1-r}\right)^p \) by \(K \). In particular, one has

\[
\int_0^\infty x^{-r}(\int_x^\infty f_\varepsilon(t)dt)^p dx < K \int_0^\infty t^{-r}(t f_\varepsilon(t))^p dt,
\]

and then

\[
\frac{1}{\varepsilon}(\frac{p}{1-r+\varepsilon})^p < K \frac{1}{\varepsilon}.
\]

It follows that \(\left(\frac{p}{1-r}\right)^p \leq K \), for \(\varepsilon \to 0 \). This contradiction follows that the constant factor \(\left(\frac{p}{1-r}\right)^p \) in (11) is the best possible.

The lemma is proved.

Proof of Theorem. By (6) and (11), we have (3).

Remark. (i) Since for \(p=1 \), two sides of (1) (or (2)) is equal, it follows that for \(p \in (-\infty, 0) \cup (0, +\infty) \), we have Hardy-type integral inequalities with \(r \neq 1 \) such as (3), (2) and (1).
(ii) replacing \(f^p(t) \) by \(f(t) \) and \(p \) by \(\frac{1}{r} \) in (8), we have \(r < 0 \), and

\[
\int_0^\infty \left(\frac{\int_0^\infty \frac{f''(t)}{x} dt}{x} \right)^{\frac{1}{r}} dx < \left(\frac{1}{1 - r} \right)^{\frac{1}{r}} \int_0^\infty f(t) dt, \tag{15}
\]

which is relating the following new inequality for \(-1 \leq r < 0\) (see Thanh et al. [8]):

\[
\sum_{n=1}^{\infty} \left(\frac{\sum_{k=1}^{n} a_k^r}{n} \right)^{\frac{1}{r}} dx < \left(\frac{1}{1 - r} \right)^{\frac{1}{r}} \sum_{n=1}^{\infty} a_n. \tag{16}
\]

References

[1] G. H. Hardy, Note on some point in the integral calculus(LXIV), Messenger of Math., 57(1928), 12-16.

Received: July 1, 2007