The structure of module amenable Banach algebras

S. A. Hosseiniun and D. Ebrahimi Bagha

Department of Mathematics, Shahid Beheshti University Evin, Teheran, Iran r-hosseini@cc.sbu.ac.ir D-Ebrahimi@cc.sbu.ac.ir

Abstract. In this paper, we study the module amenability of Banach algebras and characterize it in terms the concepts spliting and admissibility of short exact sequences.

Mathematics Subject Classification: 43A07, 46H25

Keywords: Amenability, Module Amenability, Spliting admissibility

1. MODULE AMENABILITY

All of the definitions in the following are in [A]. Let $\mathfrak A$ and A be Banach algebras such that A is a Banach $\mathfrak A$ -bimodule with compatible actions, that is

$$\alpha \cdot (ab) = (\alpha \cdot a)b, a(\alpha \cdot b) = (a \cdot \alpha)b$$
 $(a, b \in A, \alpha \in \mathfrak{A})$

Let X be a Banach A-bimodule and a Banach $\mathfrak A$ -bimodule with compatible actions, that is

$$\alpha \cdot (a \cdot x) = (\alpha \cdot a) \cdot x, (a \cdot \alpha) \cdot x = a \cdot (\alpha \cdot x), (\alpha \cdot x) \cdot a = \alpha \cdot (x \cdot a) \quad (a \in A, \alpha \in \mathfrak{A}, x \in X)$$

and the same for the right or two-sided actions. Then we say that X is a Banach $A-\mathfrak{A}$ —module. If morever

$$\alpha \cdot x = x \cdot \alpha \qquad (\alpha \in \mathfrak{A}, x \in X),$$

Then X is called a commutative $A-\mathfrak{A}$ —module.

A bounded map $D: A \longrightarrow X$ is called a module derivation if

$$D(a \pm b) = D(a) \pm D(b), \quad D(ab) = (Da) \cdot b + a \cdot (Db) \qquad (a, b \in A)$$

and

$$D(\alpha \cdot a) = \alpha \cdot D(a), D(a \cdot \alpha) = D(a) \cdot \alpha \qquad (\alpha \in \mathfrak{A}, a \in A).$$

Note that $D:A\longrightarrow X$ is bounded if there exist M>0 such that $\|D(a)\|\le M\|a\|$, for each $a\in A$. Although D is not necessarily linear ,but still its boundedness implies its norm continuity. When X is commutative , each $x\in X$ defines a module derivation

$$D_x(a) = a \cdot x - x \cdot a$$
 $(a \in A).$

These are called inner module derivations.

Definition 2.1. A is called module amenable (as an \mathfrak{A} -module) if for any commutative Banach A- \mathfrak{A} -module X, each module derivation $D:A\longrightarrow X^*$ is inner.

Next let $A \widehat{\otimes}_{\mathfrak{A}} A$ be the projective module tensor product of A and A [R]. This is the quotient of the usual projective tensor product $A \widehat{\otimes} A$ by the closed ideal I generated by elements of the form $\alpha \cdot a \otimes b - a \otimes b \cdot \alpha$ for $\alpha \in \mathfrak{A}$, $a,b \in A$. We have

$$(A\widehat{\otimes}_{\mathfrak{A}}A)^* \cong L_{\mathfrak{A}}(A, A^*) ,$$

where the right hand side is the space of all \mathfrak{A} —module morphisms from A to $A^*[R]$. In particular $A \widehat{\otimes}_{\mathfrak{A}} A$ is a Banach $A - \mathfrak{A}$ —module consider $w \in L(A \widehat{\otimes} A, A)$ define by $w(a \otimes b) = ab \ (a, b \in A)$ and extended by linearity

Then both w and its second conjugate $w^{**} \in L((A \widehat{\otimes} A)^{**}, A^{**})$ are $A-\mathfrak{A}$ —module homomorphisms. Let J be the closed ideal of A generated by w(I). We define

$$\tilde{w}: A \hat{\otimes}_{\mathfrak{A}} A = A \hat{\otimes} A / I \longrightarrow \frac{A}{J}$$
 by

$$\tilde{w}(a \otimes b + I) = ab + J$$
 $(a, b \in A).$

This extends to an element $\tilde{w} \in L(A \hat{\otimes}_{\mathfrak{A}} A, \frac{A}{J})$ and both \tilde{w} and its dual conjugate $\tilde{w}^{**} \in L((A \hat{\otimes}_{\mathfrak{A}} A)^{**}, \frac{A^{**}}{J^{\perp \perp}})$ are A- \mathfrak{A} -module homomorphisms.

Also $\frac{A}{J}$ and $A \hat{\otimes}_{\mathfrak{A}} A$ are Banach $\frac{A}{J} - \mathfrak{A}$ —module and \tilde{w} and \tilde{w}^{**} are $\frac{A}{J} - \mathfrak{A}$ —module homomorphisms.

Definition 2.2. A bounded net $\{e_{\alpha}\}$ in $A \widehat{\otimes}_{\mathfrak{A}} A$ is called a module approximate diagonal for A if for each $a \in A$,

$$\lim_{\alpha} [e_{\alpha} \cdot (a+J) - (a+J) \cdot e_{\alpha}] = 0, \lim_{\alpha} \tilde{w}(e_{\alpha})(a+J) = a+J.$$

An element $\tilde{M} \in (A \widehat{\otimes}_{\mathfrak{A}} A)^{**}$ is called a module virtual diagonal for A if for each $a \in A$,

$$(\tilde{w}^{**}\tilde{M})\cdot(a+J)=a+J, \quad (a+J)\cdot\tilde{M}=\tilde{M}\cdot(a+J).$$

If $\{e_{\alpha}\}$ be a module approximate diagonal for A then $\{\tilde{w}(e_{\alpha})\}$ is a bounded approximate identity for $\frac{A}{I}$.

The following results are proved as in the classical case [A].

Theorem 2.3. The following are equivalent:

- (i) A is module amenable and $\frac{A}{J}$ has a bounded approximate identity.
 - (ii) A has a module approximate diagonal.
 - (iii) A has a module virtual diagonal.

Proposition 2.4. Let $\frac{A}{J}$ be a commutative Banach \mathfrak{A} -module. if A is module amenable then $\frac{A}{J}$ has a bounded approximate identity.

2. CHARACTERIZATION OF MODULE AMENABILITY

If $X,\ Y$ and Z are Banach $\frac{A}{J}-\mathfrak{A}$ —modules and $f:X\longrightarrow Y$, $g:Y\longrightarrow Z$ are $\frac{A}{J}-\mathfrak{A}$ — module homomorphisms, Then the sequence

$$\Sigma: 0 \longrightarrow X \longrightarrow Y \longrightarrow Z \longrightarrow 0$$

is exact if f is one -to-one $Im\ g=Z$, and $Im\ f=ker\ g$. The exact sequence Σ is admissible if there is a \mathfrak{A} -module homomorphism $F:Y\longrightarrow X$ such Ff=I on X. The exact sequence Σ splits if there is a $\frac{A}{J}-\mathfrak{A}$ - modules homomorphism $F:Y\longrightarrow X$ such that Ff=I on X.

If K is the kernel of \tilde{w} , and $\frac{A}{J}$ has a bounded approximate identity, then the sequence

$$\tilde{\Pi}: 0 \longrightarrow K \stackrel{i}{\longrightarrow} A \widehat{\otimes}_{\mathfrak{A}} A \stackrel{\tilde{\omega}}{\longrightarrow} \frac{A}{J} \longrightarrow 0$$

is exact as a sequence of Banach $\frac{A}{J}$ -24-modules, and the same is true for the dual sequence

$$\widetilde{\Pi}^*: 0 \longrightarrow \left(\frac{A}{J}\right)^* \xrightarrow{\widetilde{\omega}^*} \left(A \widehat{\otimes}_{\mathfrak{A}} A\right)^* \xrightarrow{i^*} K^* \longrightarrow 0$$

Proposition 3.1. Let $\Sigma: 0 \longrightarrow X \stackrel{f}{\longrightarrow} Y \stackrel{g}{\longrightarrow} Z \longrightarrow 0$ be a short exact sequence of Banach $\frac{A}{J} - \mathfrak{A}$ -modules. If there exists a \mathfrak{A} - module morphism $F: Y \longrightarrow X$ satisfying Ff = I on X then there exists a unique \mathfrak{A} -module morphism $G: Z \longrightarrow Y$ satisfying gG = I on Y and conversely. moreover F is

an $\frac{A}{J}$ – \mathfrak{A} – module morphism if and only if G is.

Proof. is similar to [1].

Lemma 3.2. Let $\frac{A}{J}$ and $A \widehat{\otimes}_{\mathfrak{A}} A$ are commutative Banach \mathfrak{A} -modules. If $\frac{A}{J}$ has an identity, the sequence $\tilde{\Pi}, \tilde{\Pi}^*$ are admissible. If $\frac{A}{J}$ has a bounded approximate identity, $\tilde{\Pi}^*$ is admissible.

Proof. Let $\frac{A}{J}$ has an identity e+J, $\theta(a+J)=a\otimes e+I$ is a \mathfrak{A} -module morphism and a right inverse for \tilde{w} , and θ^* is the required left inverse for \tilde{w}^* as $\tilde{w}\theta=I$ implies that $\theta^*\tilde{w}^*=I^*$ on $(\frac{A}{J})^*$. If $\frac{A}{J}$ has a bounded approximate identity $\{e_{\alpha}+J\}$, let $u\in (A\widehat{\otimes}_{\mathfrak{A}}A)^{**}$ be a weak* limit point of $\{e_{\alpha}\otimes e_{\alpha}+I\}$. Define $\sigma:(A\widehat{\otimes}_{\mathfrak{A}}A)^*\to(\frac{A}{J})^*$ by

$$\langle a+J,\sigma(g)\rangle = \langle (a+J)\cdot g,u\rangle \ a\in A,g\in (A\widehat{\otimes}_{\mathfrak{A}}A)^*$$
.

 σ is a \mathfrak{A} -module morphism and a left inverse for \tilde{w}^* .

Theorem 3.3. Let $\frac{A}{J}$ and $A \widehat{\otimes}_{\mathfrak{A}} A$ are commutative Banach \mathfrak{A} -modules. The Banach algebra A is module amenable if and only if

- (i) $\frac{A}{J}$ has a bounded approximate identity , and
- (ii) The exact sequence $\tilde{\Pi}^*$ splits.

Proof. If A is module amenable , then $\frac{A}{J}$ has a bounded approximate identity . Let \tilde{M} be a module virtual diagonal for A . For $f \in (A \widehat{\otimes}_{\mathfrak{A}} A)^*$, $a \in A$ define $\langle \theta(f), a+J \rangle = \langle \tilde{M}, f \cdot (a+J) \rangle \cdot \theta$ is a $\frac{A}{J} - \mathfrak{A}$ —module morphism from $(A \widehat{\otimes}_{\mathfrak{A}} A)^*$ in to $(\frac{A}{J})^*$ and $\theta o \tilde{w}^* = I$ on $(\frac{A}{J})^*$. Conversely, Suppose that $\frac{A}{J}$ has a bounded approximate identity $\{e_{\alpha} + J\}$ and θ is an $\frac{A}{J} - \mathfrak{A}$ —module morphism with $\theta \tilde{w}^* = I$, on $(\frac{A}{J})^*$. Suppose that $\{e_{\alpha} \otimes e_{\alpha} + I\}$ converges weak* to $u \in (A \widehat{\otimes}_{\mathfrak{A}} A)^{**}$. Set $\tilde{M} = \theta^* \tilde{w}^{**} \mathfrak{A}$. Then \tilde{M} is a module virtual diagonal for A.

Theorem 3.4. Let A be a module amenable Banach algebra , and let $\Sigma:0\longrightarrow X^*\longrightarrow Y\longrightarrow Z\longrightarrow 0$ be an admissible short exact sequence of commutative Banach $\frac{A}{J}-\mathfrak{A}$ —module with X^* a dual $\frac{A}{J}-\mathfrak{A}$ —module . Then Σ splits.

Proof. Since Σ is admissible , there exists $\tilde{G} \in L_{\mathfrak{A}}(Z,Y)$ satisfying $g\tilde{G} = I$ on Z. Define $D(a) = (a+J) \cdot \tilde{G} - \tilde{G}(a+J)$. Then D is a module derivation from A to the bimodule $L_{\mathfrak{A}}(Z,Y)$.Moreover , for $z \in Z$ $g(Da(z)) = g[(a+J) \cdot \tilde{G} - \tilde{G} \cdot (a+J)](z) = (a+J) \cdot z - (a+J) \cdot z = 0$. Therefore $D(A) \subset L_{\mathfrak{A}}(Z, \ker g) = L_{\mathfrak{A}}(Z, \operatorname{Im} f)$. Hence $h = f^{-1}D$ is a module derivation from A to the commutative Banach $A-\mathfrak{A}$ —module $L_{\mathfrak{A}}(Z,X^*) = (Z \widehat{\otimes}_{\mathfrak{A}} X)^*$ since A is module amenable , there exists $Q \in L_{\mathfrak{A}}(Z,X^*)$ satisfying $D(a) = (a+J) \cdot \tilde{G} - \tilde{G} \cdot (a+J) = (a+J) \cdot fQ - fQ \cdot (a+J)$. If $G = \tilde{G} - fQ$ then $G \in L_{\mathfrak{A}}(Z,Y)$ and $(a+J) \cdot G = G \cdot (a+J)$ also $G((a+J) \cdot z) = [G \cdot (a+J)](z) = [(a+J) \cdot G](z) = (a+J) \cdot G(z)$ Therefore G is a right inverse for g , and consequently the sequence Σ splits. \blacksquare

Proposition 3.5. Let A be an module amenable , unital Banach algebra . Then any two sided ideal of codimension one such that is a \mathfrak{A} -submodule is module amenable.

Proof. Let M be such an ideal and an \mathfrak{A} —submodule . for $a \in A$ there exists $\alpha \in \mathfrak{A}$, $m \in M$ such that $a = m + \alpha 1$.Let X be a commutative Banach $M-\mathfrak{A}$ -module. Now is clearly a commutative A- \mathfrak{A} -module if we set $a \cdot x = m \cdot x + \alpha x$, $x \cdot a = x \cdot m + \alpha x$ ($a \in A, x \in X$). If $D : m \to X'$ is a module derivation, D may be extended as a module derivation from A to X' by setting D(1) = 0. The module amenability of A then implies the module amenability of M.

References

- [A] M.Amini, Module amenability for semigroup algebras. Semigroup Forum. **69** (2004), 243-254.
- [CL] P. C. Curtis, Jr. and R. J. Loy, The stracture of amenable Banach algebras. J. London. Math. Soc. (2) 40, (1989), 89-104.
- [R] M. R. Rieffel, Induced Banach representatios of Banach algebras and locally compact groups. J. Func. Analysis. 1(1967), 443-491.

Received: May 11, 2006