A Vector Lyapunov Approach to
the Stability Problem for the n-Population
Continuous Time Replicator Dynamics

Zvi Retchkiman Königsberg

Instituto Politécnico Nacional, CIC
Mineria 17-2, Col. Escandon, Mexico D.F 11800, Mexico
mzvi@cic.ipn.mx

Abstract

In this paper the stability problem for the n-population continuous
time replicator dynamics using vector Lyapunov methods is addressed. After introducing the evolutionary stable strategy concept and proving that it is equivalent to being a strict Nash equilibrium, the n-population continuous time replicator dynamics equation is presented. Finally, it is shown that every strict Nash equilibrium is asymptotically stable in the associated dynamics via Lyapunov methods.

Mathematics Subject Classification: 91A22, 34D20, 93D05

1 Preliminaries

Definition 1.1 A continuous function \(\varphi : \mathbb{R}_+ \rightarrow \mathbb{R}_+ \) is said to belong to class \(\mathcal{K} \) if it is strictly increasing, \(\alpha(0) = 0 \) and \(\alpha(r) \rightarrow \infty \) as \(r \rightarrow \infty \).

Consider the differential system

\[
\frac{dx}{dt} = f(t, x)
\]

where \(f : C(\mathbb{R}_+ \times \mathbb{R}^n) \rightarrow \mathbb{R}^n \) \((x(t, t_0) = x_0)\). Suppose that \(f \) is smooth enough to guarantee existence, uniqueness and continuous dependence of solutions \(x(t) = x(t, t_0, x_0) \) of system 1. Then, the next result takes care of its stability.

Theorem 1.2 [1] Let \(V : \mathbb{R}_+ \times B(\rho) \subset \mathbb{R}^n \rightarrow \mathbb{R}_+^+ \) \((B(\rho) = \{ x \in \mathbb{R}^n : \| x \| < \rho \})\) be a continuously differentiable vector Lyapunov function, such that
\[V_0(t, x) = \sum_{i=1}^{\mathcal{u}} V_i(t, x) \]
satisfies
\[\varphi_1(\|x\|_2) \leq V_0(t, x) \leq \varphi_2(\|x\|_2), \]
for \(\varphi_1, \varphi_2 \in K \) and, the differential inequality
\[\dot{V}(x, t) \leq h[t, V(x, t)] \]
holds for all \((t, x) \in \mathbb{R}_+ \times B(\rho) \subset \mathbb{R}^n \) where \(h : \mathbb{R}_+ \times \mathbb{R}_+^\mathbf{s} \rightarrow \mathbb{R}^\mathbf{s} \) is a continuously differentiable function such that \(h(t, 0) \equiv 0 \) and \(h(t, V) \) is quasimonotone non-decreasing in \(V \) (for all \(V \in \mathbb{R}_+^\mathbf{s} \) and \(t \in \mathbb{R}_+ \)). Let \(\omega(t; w_0, t_0) \) be the solution of the comparison system

\[\dot{\omega}(t) = h(\omega(t), t), \quad \omega(t_0) = \omega_0 \geq 0. \]

Then,
\[\dot{V}(t, x(t)) \leq \omega(t; \omega_0, t_0), \quad t \geq t_0 \]
provided that \(V(t_0, x_0) \leq \omega_0 \). Therefore, the stability properties of the trivial solution \(\omega = 0 \) of the comparison system imply the corresponding stability properties of \(x \).

Corollary 1.3 In Theorem (1.2):

i). If \(h(t, \omega) \equiv 0 \) we get stability.

ii). If \(h(t, \omega) = -\alpha \omega, \alpha > 0 \), we get asymptotic stability.

Remark 1.4 We encourage those readers not familiar with game theory, its basic concepts and mathematical notations, to see [2] and [3].

Definition 1.5 Let \(\Theta \) be the polyhedron of mixed strategies profiles, a strategy profile \(x \in \Theta \) is said to be a strict Nash equilibrium if \(\{x\} = B(x) \) the best reply function.

Definition 1.6 Let \(u_i : \Theta \rightarrow \mathbb{R}_+ \), \(i \in I = 1, 2, ..., n \) be the utility function. A strategy profile \(x \in \Theta \) is evolutionary stable if for every strategy \(y \neq x \) there exists some \(\epsilon_y \in (0, 1) \) such that for all \(\epsilon \in (0, \epsilon_y) \) and with \(w = \epsilon y + (1 - \epsilon)x \)
\[u_i(x_i, w_{-i}) > u_i(y_i, w_{-i}) \] for some \(i \in I \) \hspace{1cm} (2)

The next result’s proof is much in the flavor of the one provided in [2].

Proposition 1.7 A strategy profile \(x \in \Theta \) is evolutionary stable if and only if \(x \) is a strict Nash equilibrium.

Proof 1.8 First assume that \(x \) is a strict Nash equilibrium then \(u_i(x_i, x_{-i}) > u_i(y_i, y_{-i}) \) for every \(i \), by continuity taking \(\epsilon \) small we get that

\[u_i(x_i, \epsilon y_{-i} + (1 - \epsilon) x_{-i}) > u_i(y_i, \epsilon y_{-i} + (1 - \epsilon) x_{-i}). \]

Now let us prove the converse: Take \(i \in I \) arbitrary and \(y_i \in B_i(x) \), \(y_i \neq x_i \Rightarrow u_i(y_i, x_{-i}) > u_i(x_i, x_{-i}) \) and set \(y_j = x_j \) for \(j \neq i \) (i.e., \(y_i \in B_i(x) \) for all \(i \in I \)) \Rightarrow u_i(y_i, x_{-i}) > u_i(x_i, x_{-i}) \) for all \(i \in I \) (\(\blacklozenge \)). Since \(x \in \Theta \) is evolutionary stable, for some \(i \in I \)

\[\epsilon u_i(x_i, y_{-i}) + (1 - \epsilon) u_i(x_i, x_{-i}) \]

\[> \epsilon u_i(y_i, y_{-i}) + (1 - \epsilon) u_i(y_i, x_{-i}) \]

\[\Rightarrow u_i(x_i, y_{-i}) \geq u_i(y_i, y_{-i}) \]

i.e., \(x_i \in B_i(y) \) for some \(i \) but \(y_i \in B_i(x) \) for all \(i \) therefore, \(y_i = x_i \) is a Nash equilibrium and \(\{x_i\} = B_i(x) \) and since \(i \in I = \{1, 2, \ldots, n\} \) was arbitrary we conclude that \(\{x\} = B(x) \) and therefore \(x \) is a strict Nash equilibrium.\(\blacksquare \)

Next, the \(n \)-population continuous time replicator dynamics is presented. Unlike the single population setting, there are two versions of the continuous time \(n \)-population replicator dynamics. We will deal with the one suggested by Taylor [4] which has the form:

\[\dot{x}_{ih} = \left[u_i(e_i^h, x_{-i}) - u_i(x) \right] x_i \] \hspace{1cm} (3)

with \(x \in \Theta \), pure strategy \(h \) and \(i \in I = \{1, 2, \ldots, n\} \), which by standard Lipshitz arguments has a unique solution.
2 Main Result

Theorem 2.1 Every \(x \in \Theta \), strict Nash equilibrium is asymptotically stable in the n-population continuous time replicator dynamics.

Proof 2.2 Let \(x \in \Theta \), be a strict Nash equilibrium then, \(x \) is a vertex of \(\Theta \) i.e., \(x_i = e_i^{h_i} \) and \(u_i(e_i^{h_i}, x_{-i}) > u_i(z_i, x_{-i}) \) for all \(i \in I = \{1, 2, ..., n\} \) and \(z_i \neq x_i \). By continuity this implies that \(u_i(y_i, y_{-i}) > u_i(z_i, y_{-i}) \) in a \(\mathcal{N}(x) \cap \Theta \). Now take the neighborhood as small as needed in such away that it contains no other vertex of \(\Theta \) i.e., the set of strategies \(y_{-i} \) is included in the set of strategies \(x_{-i} \). Therefore, from the definition of strict Nash equilibrium with the \(x_{-i} \mid y_{-i} \), we get that \(u_i(e_i^{h_i}, y_{-i}) > u_i(y_i, y_{-i}) = u_i(y) \) for all \(y \neq x \), \(y \in \mathcal{N}(x) \cap \Theta \) and all \(i \in I \). Now, define as our vector Lyapunov function \(V(y) = [V_1(y), V_2(y), ..., V_n(y)]^T \); where \(V_i(y) = \sum x_i \log \frac{x_i}{y_i}, 1 \leq i \leq n \) are relative entropy functions defined in a specific neighborhood of \(x \) which without loss of generality will be taken equal to \(\mathcal{N}(x) \). Then, applying theorem 1.2 in \(\mathcal{N}(x) \cap \Theta \), we can verify that all the its conditions are satisfied and that,

\[
\dot{V}(y) = - \left[u_1(e_1^{h_1} - y, y_{-1}), u_2(e_2^{h_2} - y, y_{-2}), ..., u_n(e_n^{h_n} - y, y_{-n}) \right]^T < 0^T
\]

implying that \(x \) is asymptotically stable in the n-population continuous time replicator dynamics. \(\blacksquare \)

Remark 2.3 Converse of (2.1) is also true [2]. Therefore, being a strictly Nash equilibrium is equivalent to asymptotic stability.

3 Conclusions

Asymptotic stability for the continuous time n-population replicator dynamics was shown to hold, in a more natural way than other previous scalar approaches by means of employing vector Lyapunov functions.

References

Received: April 3, 2007