Finite Rings and Loop Rings
Involving the Commuting Regular Elements

H. Doostie
Mathematics Department
Teacher Training University
49 Mofateh Ave., Tehran 15614, Iran
doostih@saba.tmu.ac.ir

L. Pourfaraj
Department of Mathematics
Science and Research Branch
Islamic Azad University
P. O. Box 14515/1775, Tehran, Iran
L.pourfaraj@iauctb.ac.ir

Abstract
Two elements x and y of a ring R are commuting regular if for some $a \in R$, $xy = yxayx$ holds. In this paper we study the finite rings $\mathbb{Z}_p[S]$ and $\mathbb{Z}_{p_1p_2}[L_n(m)]$, and prove that the first one is commuting regular and the second ring contains the commuting regular element and idempotents as well (where p, p_1 and p_2 are odd primes. Moreover, i, m and n are positive integers such that $m < n$, $(m,n) = 1$ and $(m-1,n) = 1$).

Mathematics Subject Classification: 16E50, 12E15, 16N60

Keywords: Commuting regular rings, group rings, loop ring

1. Introduction
We use R and S to denote a ring and a semigroup, respectively. A quasi group is a set Q with a binary operation, here denoted by ",", with the property that for all $a, b \in Q$, there are unique solutions to the equations $a \cdot x = b$ and $y \cdot a = b$. A quasi group with an identity element is called a loop. A ring R is called commuting regular if and only if for each $x, y \in R$ there exists an element a of R such that $xy = yxax$ (see [6]). The commuting regular semigroup is defined
in a similar way in [2]. A positive integer \(n \) is said to be a perfect number if \(n \) is equal to the sum of all its positive divisors, excluding \(n \) itself (see [1]). Let \(R \) be a ring, \(G \) is a group and \(R[G] \) be the set of all linear combinations of the form \(\alpha = \sum_{g \in G} \alpha(g)g \) where \(\alpha(g) \in R \) and \(\alpha(g) = 0 \) except of a finite number of coefficients. The sum and product of elements of \(R[G] \) are defined by:

\[
\left(\sum_{g \in G} \alpha(g)g \right) + \left(\sum_{g \in G} \beta(g)g \right) = \sum_{g \in G} (\alpha(g) + \beta(g))g,
\]

\[
\left(\sum_{g \in G} \alpha(g)g \right) \left(\sum_{h \in G} \beta(h)h \right) = \sum_{g, h \in G} \alpha(g)\beta(h)gh.
\]

\(R[G] \) is called the group ring of \(G \) over \(R \) (see [4]). If we replace the group \(G \) in the above definition by a semigroup \(S \) (or loop \(L \)) we get \(R[S] \) (or \(R[L] \)) the semigroup ring (or loop ring). Following [6], let \(L_n(m) = \{e, 1, 2, \ldots, n\} \) be a set where \(n > 3 \), \(n \) is an odd integer and \(m \) is a positive integer such that \((m, n) = 1 \) and \((m - 1, n) = 1 \) with \(m < n \). Define on \(L_n(m) \), a binary operation “.” as follows:

1. \(e \cdot i = i \cdot e = i \) for all \(i \in L_n(m) - \{e\} \),
2. \(i^2 = e \) for all \(i \in L_n(m) \),
3. \(i \cdot j = t \) where \(t \equiv (mj - (m - 1)i)(\mod n) \) for all \(i, j \in L_n(m), i \neq e \) and \(j \neq e \).

Then \(L_n(m) \) is a loop.

2. The commuting regular semigroup ring \(Z_p[S] \)

Definition 2.1. A group ring \(R[G] \) is said to be a commuting regular group ring if \(R \) be a commuting regular ring. Also, we define the commuting regular semigroup ring, commuting regular loop ring and commuting regular groupoid ring in the same way.

Definition 2.2. Two elements \(x \) and \(y \) of a ring \(R \) (or semigroup \(S \)) are commuting regular if for some \(a \in R \) (or \(a \in S \)), \(xy = yxax \).

Proposition 2.3. Let \(S = \{a, b, c\} \) be the semigroup given by the table,

<table>
<thead>
<tr>
<th></th>
<th>a</th>
<th>b</th>
<th>c</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>a</td>
<td>a</td>
<td>a</td>
</tr>
<tr>
<td>b</td>
<td>a</td>
<td>a</td>
<td>a</td>
</tr>
<tr>
<td>c</td>
<td>a</td>
<td>a</td>
<td>c</td>
</tr>
</tbody>
</table>

then for all prime \(p \), \(Z_p[S] \) is commuting regular semigroup ring.
Proof. If \(p = 2 \), \(Z_2[S] \) is a Boolean ring and so \(Z_2[S] \) is a commuting regular semigroup ring. Now, let \(p \) be an odd prime, then \(2^p \equiv 2 \pmod{p} \) and so

\[
(\alpha a + \beta b + \gamma c)^p \equiv (\alpha a + \beta b + \gamma c)(\mod{p}),
\]

where \(\alpha, \beta, \gamma \in \mathbb{Z}_p \). Therefore \(x^p = x \) for all \(x \in Z_p[S] \) and so

\[
x y = x^p y^p = (yx)(x^{p-2}y^{p-2})(yx)
\]

for all \(x, y \in Z_p[S] \). Then \(Z_p[S] \) is commuting regular semigroup ring.

Corollary 2.4. Let \(S = \{a, b, c\} \) be the semigroup given by the table,

\[
\begin{array}{ccc}
a & b & c \\
a & a & a \\
b & a & b \\
c & a & a \\
\end{array}
\]

then \(R = \prod_{i \in I} Z_{p_i} \) is a commuting regular ring where \(p_i \) is a prime number for all \(i \).

Proof. By the Proposition 3.1 of [2] and the Proposition 2.3.

Proposition 2.5. Let \(S = \{a, b, c\} \) be the semigroup given by the table,

\[
\begin{array}{ccc}
a & b & c \\
a & a & a \\
b & a & b \\
c & a & a \\
\end{array}
\]

then

\[
I = \{0, a, b, c, (p-1)a + b, (p-1)a + c, (p-1)a + b + c, (p-2)a + b + c\},
\]

is the set of all idempotent elements of commuting regular semigroup ring \(Z_p[S] \).

Proof. Assume that \(x \) be an idempotent of \(Z_p[S] \), then \(x = (\alpha a + \beta b + \gamma c) \) where \(\alpha, \beta, \gamma \in \mathbb{Z}_p \). By \(x^2 = x \), we have \((\alpha^2 + 2\alpha\beta + 2\alpha\gamma + 2\beta\gamma) = \alpha, \beta^2 = \beta \) and \(\gamma^2 = \gamma \). Then \(\beta, \gamma \in \{0, 1\} \).

(1) If \(\beta = \gamma = 0, \alpha \in \{0, 1\} \) and so \(x = 0 \) or \(x = a \),

(2) If \(\beta = 0 \) and \(\gamma = 1, \alpha \in \{0, (p-1)\} \) and so \(x = c \) or \(x = (p-1)a + c \),

(3) If \(\beta = \gamma = 1, \alpha \in \{(p-1), (p-2)\} \) and so \(x = (p-1)a + b + c \) or \(x = (p-2)a + b + c \).
Example 2.6. Let \(M = \{a, b, c\} \) be the groupoid given by the table,

\[
\begin{array}{ccc}
 & a & b & c \\
 a & a & b & c \\
b & c & a & b \\
c & b & c & a
\end{array}
\]

then \(Z_2[M] \) is the commuting regular groupoid ring having only 8 elements given by

\[\{0, a, b, c, a + b, a + c, b + c, a + b + c\} \]

Clearly, \(Z_2[M] \) is a non associative ring without identity and non commuting regular ring. But center of \(Z_2[M] \) (i.e; \(Z(Z_2[M]) = \{0, a+b+c\} \) is commuting regular ring.

3. The loop ring \(Z_{p_1p_2}[L_n(m)] \)

In this section we will prove that existence of commuting regular elements for the loop ring \(Z_t[L_n(m)] \) when \(t \) is an even perfect number. Also we will prove that the loop ring \(Z_t[L_n(m)] \) have commuting regular elements when \(t \) is of the form \(2^i p \) or \(3^i p \) (where \(p \) is an odd prime) or in general when \(t = p_1^i p_2 \) (\(p_1 \) and \(p_2 \) are distinct odd primes).

Proposition 3.1. Let \(Z_t[L_n(m)] \) be a loop ring where \(t \) is an even perfect number of the form \(t = 2^r(2^{r+1}-1) \) for some \(r > 1 \), then there exists an idempotent element \(e \in Z_t[L_n(m)] \) such that \(e \neq 0, 1 \).

Proof. As \(t \) be an even perfect number, \(t \) must be of the form

\[t = 2^r(2^{r+1}-1), \text{ for some } r > 1 \]

where \((2^{r+1}-1) \) is a prime. Consider \(e = 2^r(1+l) \in Z_t[L_n(m)] \) where \(l \in L_n(m) \). Now

\[e^2 = (2^r(1+l))^2 = 2.2^{2r}(1+l) \]

by \(2^{r+2r+1} \equiv 2^r \) (mod \(t \)). Therefore \(e^2 = e \).

Example 3.2. The loop ring \(Z_6[L_n(m)] \) has an idempotent \(e = 2(1+l) \) where \(l \in L_n(m) \).

Proposition 3.3. Let \(Z_t[L_n(m)] \) be a loop ring where \(t \) is an even perfect number of the form \(t = 2^r(2^{r+1}-1) \) for some \(r > 1 \), then there exist commuting regular elements \(a, b \in Z_t[L_n(m)] \) such that \(a \neq b \).
Proof. As t be an even perfect number, t must be of the form

$$t = 2^r(2^{r+1} - 1), \text{ for some } r > 1$$

where $(2^{r+1} - 1)$ is a prime. Assume that $a = 2^r(1+l)$ and $b = (t - 2^r)(1+l) \in Z_t[L_n(m)]$. Now

$$b^2 = [(t - 2^r)(1+l)]^2 = (t - 2^r)^2(1+l) \equiv 2^r(1+l)(\text{mod } t)$$

by $2^r2^{r+1} \equiv 2^r(\text{mod } t)$, so $b^2 = a$. Also,

$$ab = [2^r(1+l)][(t - 2^r)(1+l)] \equiv -2^r.2^r(1+l)(\text{mod } t)$$

by $-2^r.2^r(1+l) \equiv (t - 2^r)(1+l)(\text{mod } t)$ and so $ab = b$. Similarly, $ba = b$.

By the Proposition 3.1, $a^2 = a$. Therefore

$$ab = (ba)b(ba).$$

Example 3.4. The loop ring $Z_6[L_n(m)]$ have commuting regular elements $a = 2(1+l)$ and $b = (6 - 2)(1+l)$ where $l \in L_n(m)$.

Proposition 3.5. Let $Z_{2p}[L_n(m)]$ be a loop ring where p is an odd prime such that $p \mid 2^{r+1} - 1$ for some $r \geq 1$, then there exists an idempotent element $e \in Z_{2p}[L_n(m)]$ such that $e \neq 0, 1$.

Proof. Suppose that $p \mid 2^{r+1} - 1$ for some $r \geq 1$ and $e = 2^r(1+l) \in Z_{2p}[L_n(m)]$. Therefore

$$e^2 = (2^r(1+l))^2 = 2.2^r(1+l) = 2^{r+1}.2^r(1+l) \equiv 2^r(1+l)(\text{mod } 2p)$$

by $2^r2^{r+1} \equiv 2^r(\text{mod } 2p)$, so $e^2 = e$.

Example 3.6. The loop ring $Z_{10}[L_n(m)]$ has an idempotent $e = 2^3(1+l)$ where $r = 3, 5 \mid 2^{3+1} - 1$ and $l \in L_n(m)$.

Proposition 3.7. Let $Z_{2p}[L_n(m)]$ be a loop ring where p is an odd prime such that $p \mid 2^{r+1} - 1$ for some $r \geq 1$, then there exist commuting regular elements $a, b \in Z_{2p}[L_n(m)]$ such that $a \neq b$.
Proof. Suppose that $p \mid 2^{r+1} - 1$ for some $r \geq 1$ and $a = 2^r(1 + l), b = (2p - 2^r)(1 + l) \in Z_{2p}[L_n(m)]$. Therefore

$$b^2 = [(2p - 2^r)(1 + l)]^2 = 2(2p - 2^r)^2(1 + l) \equiv 2.2^{2r}(1 + l)(\mod 2p)$$

and

$$2^{r+1}2^r(1 + l) \equiv 2^r(1 + l)(\mod 2p)$$

by $2^r2^{r+1} \equiv 2^r(\mod 2p)$ and so $b^2 = a$. Also,

$$ab = [2^r(1 + l)][(2p - 2^r)(1 + l)] \equiv -2^r(1 + l)2^r(1 + l)(\mod 2p)$$

and

$$-2.2^{2r}(1 + l) \equiv (2p - 2^r)(1 + l)(\mod 2p).$$

Hence $ab = b$. Similarly, $ba = b$. By the Proposition 3.6, $a^2 = a$. Therefore

$$ab = (ba)b(ab).$$

Example 3.8. The loop ring $Z_{10}[L_n(m)]$ have commuting regular elements $a = 2^4(1 + l)$ and $b = 2(1 + l)$ where $l \in L_n(m)$.

Proposition 3.9. Let $Z_{2p}[L_n(m)]$ be a loop ring where p is an odd prime such that $p \mid 2^{r+1} - 1$ for some $r \geq i$, then there exists an idempotent element $e \in Z_{2p}[L_n(m)]$ such that $e \neq 0, 1$.

Proof. Suppose that $p \mid 2^{r+1} - 1$ for some $r \geq i$ and $e = 2^r(1 + l) \in Z_{2p}[L_n(m)]$. Since

$$2^{r+1} \equiv 1(\mod p)$$

for some $r \geq i \Leftrightarrow 2^r2^{r+1} \equiv 2^r(\mod 2^ip)$ as $(2^r, 2^ip) = 2^i, r \geq i$

then $e^2 = e$.

Example 3.10. The loop ring $Z_{23,7}[L_n(m)]$ has an idempotent $e = 2^5(1 + l)$ where $5, 7 \mid 25^{1+1} - 1$ and where $l \in L_n(m)$.

Proposition 3.11. Let $Z_{2p}[L_n(m)]$ be a loop ring where p is an odd prime such that $p \mid 2^{r+1} - 1$ for some $r \geq 1$, then there exist commuting regular elements $a, b \in Z_{2p}[L_n(m)]$ such that $a \neq b$.

Proof. Suppose that $p \mid 2^{r+1} - 1$ for some $r \geq 1$ and $a = 2^r(1 + l), b = (2^p - 2^r)(1 + l) \in Z_{2p}[L_n(m)]$. Since $2^r2^{r+1} \equiv 2^r(\mod 2^ip)$ as $(2^r, 2^ip) = 2^i, r \geq i$,

$$b^2 = a$$

and $ab = ba = b$.

By the Proposition 3.9, $a^2 = a$. Therefore

$$ab = (ba)b(ab).$$
Example 3.12. The loop ring $Z_{2^i 7}[L_n(m)]$ have commuting regular elements $a = 2^i(1 + l)$ and $b = (2^3 7 - 2^i)(1 + l)$ where $r = 5, 7 | 2^{5+1} - 1$ and $l \in L_n(m)$.

Proposition 3.13. Let $Z_{3^i p}[L_n(m)]$ be a loop ring where p is an odd prime such that $p \mid 2.3^r - 1$ for some $r \geq i$, then there exists an idempotent element $e \in Z_{3^i p}[L_n(m)]$ such that $e \neq 0, 1$.

Proof. Suppose that $p \mid 2.3^r - 1$ for some $r \geq i$ and $e = 3^r(1 + l) \in Z_{3^i p}[L_n(m)]$. Since

$$2.3^r \equiv 1 \pmod{p}$$

for some $r \geq i$ \iff $2.3^r \equiv 3^r(\mod 3^ip)$ as $(3^i, 3^ip) = 3^i, r \geq i$

then

$$e^2 = (3^r(1 + l))^2 = 2.3^{2r}(1 + l) = 2.3^r.3^r(1 + l) \equiv 3^r(1 + l)(\mod 3^ip),$$

so $e^2 = e$.

Example 3.14. The loop ring $Z_{3^2 5}[L_n(m)]$ has an idempotent $e = 3^5(1 + l)$ where $r = 5, 5 | 2.3^5 - 1$ and $l \in L_n(m)$.

Proposition 3.15. Let $Z_{3^i p}[L_n(m)]$ be a loop ring where p is an odd prime such that $p \mid 2.3^r - 1$ for some $r \geq i$, then there exist commuting regular elements $a, b \in Z_{3^i p}[L_n(m)]$ such that $a \neq b$.

Proof. Suppose that $p \mid 2.3^r - 1$ for some $r \geq i$ and $a = 3^r(1 + l), b = (3^i p - 3^r)(1 + l) \in Z_{3^i p}[L_n(m)]$. Since $2.3^r \equiv 3^r(\mod 3^ip)$ as $(3^i, 3^ip) = 3^i, r \geq i, a^2 = a$ by the Proposition 3.13. Similarly,

$$b^2 = a \text{ and } ab = ba = b.$$

Therefore

$$ab = (ba)b(ba).$$

Example 3.16. The loop ring $Z_{3^2 5}[L_n(m)]$ have commuting regular elements $a = 3^5(1 + l)$ and $b = (3^2 5 - 3^5)(1 + l)$ where $r = 5, 5 | 2.3^5 - 1$ and $l \in L_n(m)$.

Proposition 3.17. Let $Z_{p_1 p_2}[L_n(m)]$ be a loop ring where p_1 and p_2 are distinct odd primes and $p_2 \mid 2.3^r - 1$ for some $r \geq i$, then there exists an idempotent element $e \in Z_{p_1 p_2}[L_n(m)]$ such that $e \neq 0, 1$.
Proof. Suppose that \(p_2 \mid 2.p_1^r - 1 \) for some \(r \geq i \) and \(e = p_1^i(1 + l) \in Z_{p_1^i.p_2}[L_n(m)] \). Since

\[
2.p_1^i \equiv 1 \pmod{p_2}
\]

for some \(r \geq i \) ⇔ \(2.p_1^i.p_1^r \equiv p_1^i \pmod{p_1^i.p_2} \) as \((p_1^i, p_1^i.p_2) = p_1^i, r \geq i\) then

\[
e^2 = (p_1^i(1 + l))^2 = 2.p_1^{2r}(1 + l) = 2.p_1^r.p_1^r(1 + l) \equiv p_1^r(1 + l)(\pmod{p_1^i.p_2}).
\]

So \(e^2 = e \).

Proposition 3.18. Let \(Z_{p_1^i.p_2}[L_n(m)] \) be a loop ring where \(p_1 \) and \(p_2 \) are distinct odd primes and \(p_2 \mid 2.p_1^r - 1 \) for some \(r \geq i \), then there exist commuting regular elements \(a, b \in Z_{p_1^i.p_2}[L_n(m)] \) such that \(a \neq b \).

Proof. Suppose that \(p_2 \mid 2.p_1^r - 1 \) for some \(r \geq i \) and \(a = p_1^i(1 + l), b = (p_1^i.p_2 - p_1^i)(1 + l) \in Z_{p_1^i.p_2}[L_n(m)] \). Since \(2.p_1^r.p_1^r \equiv p_1^r \pmod{p_1^i.p_2} \) as \((p_1^i, p_1^i.p_2) = p_1^i, r \geq i, a^2 = a \) by the Proposition 3.18. Similarly,

\[
b^2 = a \text{ and } ab = ba = b.
\]

Therefore

\[
ab = (ba)b(ba).
\]

References

Received: March 15, 2007