Finite Rings and Loop Rings Involving the Commuting Regular Elements

H. Doostie

Mathematics Department Teacher Training University 49 Mofateh Ave., Tehran 15614, Iran doostih@saba.tmu.ac.ir

L. Pourfaraj

Department of Mathematics
Science and Research Branch
Islamic Azad University
P. O. Box 14515/1775, Tehran, Iran
L.pourfaraj@iauctb.ac.ir

Abstract

Two elements x and y of a ring R are commuting regular if for some $a \in R$, xy = yxayx holds. In this paper we study the finite rings $Z_p[S]$ and $Z_{p_1^i p_2}[L_n(m)]$, and prove that the first one is commuting regular and the second ring contains the commuting regular element and idempotents as well (where p, p_1 and p_2 are odd primes. Moreover, i, m and n are positive integers such that m < n, (m, n) = 1 and (m-1,n) = 1).

Mathematics Subject Classification: 16E50, 12E15, 16N60

Keywords: Commuting regular rings, group rings, loop ring

1. Introduction

We use R and S to denote a ring and a semigroup, respectively. A quasi group is a set Q with a binary operation, here denoted by ".", with the property that for all $a, b \in Q$, there are unique solutions to the equations a.x = b and y.a = b. A quasi group with an identity element is called a loop. A ring R is called commuting regular if and only if for each $x, y \in R$ there exists an element a of R such that xy = yxayx (see [6]). The commuting regular semigroup is defined

in a similar way in [2]. A positive integer n is said to be a perfect number if n is equal to the sum of all its positive divisors, excluding n itself (see [1]). Let R be a ring, G is a group and R[G] be the set of all linear combinations of the form $\alpha = \sum_{g \in G} \alpha(g)g$ where $\alpha(g) \in R$ and $\alpha(g) = 0$ except of a finite number of coefficients. The sum and product of elements of R[G] are defined by:

$$(\sum_{g \in G} \alpha(g)g) + (\sum_{g \in G} \beta(g)g) = \sum_{g \in G} (\alpha(g) + \beta(g))g,$$

$$(\sum_{g \in G} \alpha(g)g)(\sum_{h \in G} \beta(h)h) = \sum_{g,h \in G} \alpha(g)\beta(h)gh.$$

R[G] is called the group ring of G over R (see [4]). If we replace the group G in the above definition by a semigroup S (or loop L) we get R[S] (or R[L]) the semigroup ring (or loop ring). Following [6], let $L_n(m) = \{e, 1, 2, ..., n\}$ be a set where n > 3, n is an odd integer and m is a positive integer such that (m, n) = 1 and (m - 1, n) = 1 with m < n. Define on $L_n(m)$, a binary operation "." as follows:

- (1) e.i = i.e = i for all $i \in L_n(m) \{e\}$,
- (2) $i^2 = e$ for all $i \in L_n(m)$,
- (3) i.j = t where $t \equiv (mj (m-1)i) \pmod{n}$ for all $i, j \in L_n(m)$, $i \neq e$ and $j \neq e$.

Then $L_n(m)$ is a loop.

2. The commuting regular semigroup ring $Z_p[S]$

Definition 2.1. A group ring R[G] is said to be a commuting regular group ring if R be a commuting regular ring. Also, we define the commuting regular semigroup ring, commuting regular loop ring and commuting regular groupoid ring in the same way.

Definition 2.2. Two elements x and y of a ring R (or semigroup S) are commuting regular if for some $a \in R$ (or $a \in S$), xy = yxayx.

Proposition 2.3. Let $S = \{a, b, c\}$ be the semigroup given by the table,

then for all prime $p, Z_p[S]$ is commuting regular semigroup ring.

Proof. If p = 2, $Z_2[S]$ is a Boolean ring and so $Z_2[S]$ is a commuting regular semigroup ring. Now, let p be an odd prime, then $2^p \equiv 2 \pmod{p}$ and so

$$(\alpha a + \beta b + \gamma c)^p \equiv (\alpha a + \beta b + \gamma c) \pmod{p},$$

where $\alpha, \beta, \gamma \in \mathbb{Z}_p$. Therefore $x^p = x$ for all $x \in \mathbb{Z}_p[S]$ and so

$$xy = x^p y^p = (yx)(x^{p-2}y^{p-2})(yx)$$

for all $x, y \in \mathbb{Z}_p[S]$. Then $\mathbb{Z}_p[S]$ is commuting regular semigroup ring.

Corollary 2.4. Let $S = \{a, b, c\}$ be the semigroup given by the table,

then $R = \prod_{i \in I} Z_{p_i}$ is a commuting regular ring where p_i is a prime number for all i.

Proof. By the Proposition 3.1 of [2] and the Proposition 2.3.

Proposition 2.5. Let $S = \{a, b, c\}$ be the semigroup given by the table,

then

$$I = \{0, a, b, c, (p-1)a + b, (p-1)a + c, (p-1)a + b + c, (p-2)a + b + c\},\$$

is the set of all idempotent elements of commuting regular semigroup ring $\mathbb{Z}_p[S]$.

Proof. Assume that x be an idempotent of $Z_p[S]$, then $x = (\alpha a + \beta b + \gamma c)$ where $\alpha, \beta, \gamma \in Z_p$. By $x^2 = x$, we have $(\alpha^2 + 2\alpha\beta + 2\alpha\gamma + 2\beta\gamma) = \alpha$, $\beta^2 = \beta$ and $\gamma^2 = \gamma$. Then $\beta, \gamma \in \{0, 1\}$.

- (1) If $\beta = \gamma = 0$, $\alpha \in \{0, 1\}$ and so x = 0 or x = a,
- (2) If $\beta = 0$ and $\gamma = 1$, $\alpha \in \{0, (p-1)\}$ and so x = c or x = (p-1)a + c,
- (3) If $\beta = \gamma = 1$, $\alpha \in \{(p-1), (p-2)\}$ and so x = (p-1)a + b + c or x = (p-2)a + b + c.

Example 2.6. Let $M = \{a, b, c\}$ be the groupoid given by the table,

then $Z_2[M]$ is the commuting regular groupoid ring having only 8 elements given by

$$\{0, a, b, c, a + b, a + c, b + c, a + b + c\}.$$

Clearly, $Z_2[M]$ is a non associative ring without identity and non commuting regular ring. But center of $Z_2[M]$ (i.e; $Z(Z_2[M]) = \{0, a+b+c\}$) is commuting regular ring.

3. The loop ring $Z_{p_1^i p_2}[L_n(m)]$

In this section we will prove that existence of commuting regular elements for the loop ring $Z_t[L_n(m)]$ when t is an even perfect number. Also we will prove that the loop ring $Z_t[L_n(m)]$ have commuting regular elements when t is of the form 2^ip or 3^ip (where p is an odd prime) or in general when $t = p_1^ip_2$ (p_1 and p_2 are distinct odd primes).

Proposition 3.1. Let $Z_t[L_n(m)]$ be a loop ring where t is an even perfect number of the form $t = 2^r(2^{r+1} - 1)$ for some r > 1, then there exists an idempotent element $e \in Z_t[L_n(m)]$ such that $e \neq 0, 1$.

Proof. As t be an even perfect number, t must be of the form

$$t = 2^r(2^{r+1} - 1)$$
, for some $r > 1$

where $(2^{r+1}-1)$ is a prime. Consider $e=2^r(1+l)\in Z_t[L_n(m)]$ where $l\in L_n(m)$. Now

$$e^2 = (2^r(1+l))^2 = 2 \cdot 2^{2r}(1+l)$$

by $2^r 2^{r+1} \equiv 2^r \pmod{t}$. Therefore $e^2 = e$.

Example 3.2. The loop ring $Z_6[L_n(m)]$ has an idempotent e = 2(1 + l) where $l \in L_n(m)$.

Proposition 3.3. Let $Z_t[L_n(m)]$ be a loop ring where t is an even perfect number of the form $t = 2^r(2^{r+1}-1)$ for some t > 1, then there exist commuting regular elements $a, b \in Z_t[L_n(m)]$ such that $a \neq b$.

Proof. As t be an even perfect number, t must be of the form

$$t = 2^r(2^{r+1} - 1)$$
, for some $r > 1$

where $(2^{r+1}-1)$ is a prime. Assume that $a=2^r(1+l)$ and $b=(t-2^r)(1+l) \in Z_t[L_n(m)]$. Now

$$b^2 = [(t-2^r)(1+l)]^2 = (t-2^r)^2(1+l) \equiv 2^r(1+l) \pmod{t}$$

by $2^r 2^{r+1} \equiv 2^r \pmod{t}$, so $b^2 = a$. Also,

$$ab = [2^r(1+l)][(t-2^r)(1+l)] \equiv -2.2^r.2^r(1+l) \pmod{t}$$

by $-2.2^r.2^r(1+l) \equiv (t-2^r)(1+l) \pmod{t}$ and so ab=b. Similarly, ba=b. By the Proposition 3.1, $a^2=a$. Therefore

$$ab = (ba)b(ba).$$

Example 3.4. The loop ring $Z_6[L_n(m)]$ have commuting regular elements a = 2(1+l) and b = (6-2)(1+l) where $l \in L_n(m)$.

Proposition 3.5. Let $Z_{2p}[L_n(m)]$ be a loop ring where p is an odd prime such that $p \mid 2^{r+1} - 1$ for some $r \geq 1$, then there exists an idempotent element $e \in Z_{2p}[L_n(m)]$ such that $e \neq 0, 1$.

Proof. Suppose that $p \mid 2^{r+1} - 1$ for some $r \geq 1$ and $e = 2^r(1+l) \in Z_{2p}[L_n(m)]$. Therefore

$$e^2 = (2^r(1+l))^2 = 2 \cdot 2^{2r}(1+l) = 2^{r+1} \cdot 2^r(1+l) \equiv 2^r(1+l) \pmod{2p}$$

by $2^r 2^{r+1} \equiv 2^r \pmod{2p}$, so $e^2 = e$.

Example 3.6. The loop ring $Z_{10}[L_n(m)]$ has an idempotent $e = 2^3(1+l)$ where r = 3, $5 \mid 2^{3+1} - 1$ and $l \in L_n(m)$.

Proposition 3.7. Let $Z_{2p}[L_n(m)]$ be a loop ring where p is an odd prime such that $p \mid 2^{r+1} - 1$ for some $r \geq 1$, then there exist commuting regular elements $a, b \in Z_{2p}[L_n(m)]$ such that $a \neq b$.

Proof. Suppose that $p \mid 2^{r+1} - 1$ for some $r \geq 1$ and $a = 2^r(1+l), b = (2p-2^r)(1+l) \in Z_{2p}[L_n(m)]$. Therefore

$$b^2 = [(2p - 2^r)(1+l)]^2 = 2(2p - 2^r)^2(1+l) \equiv 2 \cdot 2^{2r}(1+l) \pmod{2p}$$

and

$$2^{r+1}2^r(1+l) \equiv 2^r(1+l) \pmod{2p}$$

by $2^r 2^{r+1} \equiv 2^r \pmod{2p}$ and so $b^2 = a$. Also,

$$ab = [2^r(1+l)][(2p-2^r)(1+l)] \equiv -2^r(1+l)2^r(1+l) \pmod{2p}$$

and

$$-2.2^{2r}(1+l) \equiv (2p-2^r)(1+l) \pmod{2p}.$$

Hence ab = b. Similarly, ba = b. By the Proposition 3.6, $a^2 = a$. Therefore

$$ab = (ba)b(ba).$$

Example 3.8. The loop ring $Z_{10}[L_n(m)]$ have commuting regular elements $a = 2^3(1+l)$ and b = 2(1+l) where $l \in L_n(m)$.

Proposition 3.9. Let $Z_{2^{i}p}[L_n(m)]$ be a loop ring where p is an odd prime such that $p \mid 2^{r+1} - 1$ for some $r \geq i$, then there exists an idempotent element $e \in Z_{2^{i}p}[L_n(m)]$ such that $e \neq 0, 1$.

Proof. Suppose that $p\mid 2^{r+1}-1$ for some $r\geq i$ and $e=2^r(1+l)\in Z_{2^ip}[L_n(m)].$ Since

 $2^{r+1} \equiv 1 \pmod{p}$ for some $r \geq i \Leftrightarrow 2^r \cdot 2^{r+1} \equiv 2^r \pmod{2^i p}$ as $(2^r, 2^i p) = 2^i, r \geq i$ then $e^2 = e$.

Example 3.10. The loop ring $Z_{2^3.7}[L_n(m)]$ has an idempotent $e = 2^5(1+l)$ where r = 5, $7 \mid 2^{5+1} - 1$ and where $l \in L_n(m)$.

Proposition 3.11. Let $Z_{2^ip}[L_n(m)]$ be a loop ring where p is an odd prime such that $p \mid 2^{r+1} - 1$ for some $r \geq 1$, then there exist commuting regular elements $a, b \in Z_{2^ip}[L_n(m)]$ such that $a \neq b$.

Proof. Suppose that $p \mid 2^{r+1} - 1$ for some $r \ge 1$ and $a = 2^r (1+l), b = (2^i p - 2^r)(1+l) \in Z_{2^i p}[L_n(m)]$. Since $2^r \cdot 2^{r+1} \equiv 2^r \pmod{2^i p}$ as $(2^r, 2^i p) = 2^i, r \ge i$,

$$b^2 = a$$
 and $ab = ba = b$.

By the Proposition 3.9, $a^2 = a$. Therefore

$$ab = (ba)b(ba).$$

Example 3.12. The loop ring $Z_{2^3.7}[L_n(m)]$ have commuting regular elements $a = 2^5(1+l)$ and $b = (2^3.7-2^5)(1+l)$ where $r = 5, 7 \mid 2^{5+1}-1$ and $l \in L_n(m)$.

Proposition 3.13. Let $Z_{3^ip}[L_n(m)]$ be a loop ring where p is an odd prime such that $p \mid 2.3^r - 1$ for some $r \geq i$, then there exists an idempotent element $e \in Z_{3^ip}[L_n(m)]$ such that $e \neq 0, 1$.

Proof. Suppose that $p \mid 2.3^r - 1$ for some $r \geq i$ and $e = 3^r(1+l) \in Z_{3^ip}[L_n(m)]$. Since

 $2.3^r \equiv 1 \pmod{p}$ for some $r \ge i \Leftrightarrow 2.3^r.3^r \equiv 3^r \pmod{3^i p}$ as $(3^r, 3^i p) = 3^i, r \ge i$

then

$$e^2 = (3^r(1+l))^2 = 2.3^{2r}(1+l) = 2.3^r.3^r(1+l) \equiv 3^r(1+l) \pmod{3^i p},$$
 so $e^2 = e$.

Example 3.14. The loop ring $Z_{3^2.5}[L_n(m)]$ has an idempotent $e = 3^5(1+l)$ where $r = 5, 5 \mid 2.3^5 - 1$ and $l \in L_n(m)$.

Proposition 3.15. Let $Z_{3^ip}[L_n(m)]$ be a loop ring where p is an odd prime such that $p \mid 2.3^r - 1$ for some $r \geq i$, then there exist commuting regular elements $a, b \in Z_{3^ip}[L_n(m)]$ such that $a \neq b$.

Proof. Suppose that $p \mid 2.3^r - 1$ for some $r \geq i$ and $a = 3^r(1+l), b = (3^i p - 3^r)(1+l) \in Z_{3^i p}[L_n(m)]$. Since $2.3^r.3^r \equiv 3^r \pmod{3^i p}$ as $(3^r, 3^i p) = 3^i$, $r \geq i$, $a^2 = a$ by the Proposition 3.13. Similarly,

$$b^2 = a$$
 and $ab = ba = b$.

Therefore

$$ab = (ba)b(ba).$$

Example 3.16. The loop ring $Z_{3^2.5}[L_n(m)]$ have commuting regular elements $a = 3^5(1+l)$ and $b = (3^2.5-3^5)(1+l)$ where $r = 5, 5 \mid 2.3^5-1$ and $l \in L_n(m)$.

Proposition 3.17. Let $Z_{p_1^i p_2}[L_n(m)]$ be a loop ring where p_1 and p_2 are distinct odd primes and $p_2 \mid 2.p_1^r - 1$ for some $r \geq i$, then there exists an idempotent element $e \in Z_{p_1^i p_2}[L_n(m)]$ such that $e \neq 0, 1$.

Proof. Suppose that $p_2 \mid 2.p_1^r - 1$ for some $r \geq i$ and $e = p_1^r(1+l) \in Z_{p_1^i p_2}[L_n(m)]$. Since

 $2.p_1^r \equiv 1 \pmod{p_2}$ for some $r \geq i \iff 2.p_1^r.p_1^r \equiv p_1^r \pmod{p_1^i p_2}$ as $(p_1^r, p_1^i p_2) = p_1^i, r \geq i$ then

$$e^2=(p_1^r(1+l))^2=2.p_1^{2r}(1+l)=2.p_1^r.p_1^r(1+l)\equiv p_1^r(1+l)(\text{mod }p_1^ip_2).$$
 So $e^2=e.$

Proposition 3.18. Let $Z_{p_1^i p_2}[L_n(m)]$ be a loop ring where p_1 and p_2 are distinct odd primes and $p_2 \mid 2.p_1^r - 1$ for some $r \geq i$, then there exist commuting regular elements $a, b \in Z_{p_1^i p_2}[L_n(m)]$ such that $a \neq b$.

Proof. Suppose that $p_2 \mid 2.p_1^r - 1$ for some $r \geq i$ and $a = p_1^r (1+l)$, $b = (p_1^i p_2 - p_1^r)(1+l) \in Z_{p_1^i p_2}[L_n(m)]$. Since $2.p_1^r.p_1^r \equiv p_1^r \pmod{p_1^i p_2}$ as $(p_1^r, p_1^i p_2) = p_1^i$, $r \geq i$, $a^2 = a$ by the Proposition 3.18. Similarly,

$$b^2 = a$$
 and $ab = ba = b$.

Therefore

$$ab = (ba)b(ba).$$

References

- [1] B. David, Elementary number theory, Universal Book Stall, New Delhi, 1998.
- [2] H. Doostie, L. Pourfaraj, On the minimal ideals of commuting regular rings and semigroups, Internat. J. Appl. Math. 19, NO. 2 (2006), 201-216.
- [3] J. M. Howie, An introduction to semigroup theory, Academic Press, London, 1976.
- [4] P. Ribenboim, Rings and modules, Intersience tracts in pure and applied mathematics, John Wiley and Sons Inc, 1969.
- [5] S. V. Singh, On a new class of loop rings, Phd Thesis, IIT Madras, 1994.
- [6] Amir. H. Yamini, Sh. A. Safari Sabet, Commuting regular rings, Internat. J. Appl. Math. 14, NO. 4 (2003), 3557-3364.

Received: March 15, 2007