On Anti-centro-symmetric Solutions of Quaternion Matrix Equation $AXA^* = B$

Sitao Ling and Tongsong Jiang¹

Department of Mathematics Linyi Normal University Linyi Shandong 276005, China

Abstract

By means of quaternion generalized singular value decomposition of quaternion matrices, this paper derives necessary and sufficient conditions that quaternion matrix equation $AXA^* = B$ has an anti-centrosymmetric solution, and obtains a general expression of the anti-centrosymmetric solutions. In addition, an expression of the optimal approximation solution to a given matrix is derived.

Mathematics Subject Classification: 15A24

Keywords: Anti-centro-symmetric matrix; QGSVD; Quaternion matrix equation

1 Introduction

Let \mathbf{R} be the real number field, $\mathbf{Q} = \mathbf{R} \oplus \mathbf{R} \mathbf{i} \oplus \mathbf{R} \mathbf{j} \oplus \mathbf{R} \mathbf{k}$ the quaternion field, where $\mathbf{i} \mathbf{j} = -\mathbf{j} \mathbf{i} = \mathbf{k}$, $\mathbf{i}^2 = \mathbf{j}^2 = \mathbf{k}^2 = \mathbf{i} \mathbf{j} \mathbf{k} = -1$. $\mathbf{F}_r^{m \times n}$ denotes the set of $m \times n$ matrices on a field \mathbf{F} rank r. Let $a = a_1 + a_2 \mathbf{i} + a_3 \mathbf{j} + a_4 \mathbf{k} \in \mathbf{Q}$, where $a_t \in \mathbf{R}$, then define $\overline{a} = a_1 - a_2 \mathbf{i} - a_3 \mathbf{j} - a_4 \mathbf{k}$ to be the conjugate of a, $|a| = \sqrt{\overline{aa}} = \sqrt{a_1^2 + a_2^2 + a_3^2 + a_4^2}$. For any $A = (a_{ij}) \in \mathbf{Q}^{m \times n}$, $||A||_{\mathbf{F}} = \sqrt{\sum_{i=1}^{m} \sum_{j=1}^{n} |a_{ij}|^2}$ is called Frobenius norm, $A^* = (\overline{a_{ji}})$ represents conjugate transpose of A, and $(AB)^* = B^*A^*$ for any $B = (b_{ij}) \in \mathbf{Q}^{n \times p}[1]$. If A and B are both square matrices, define $A \circ B = (a_{ij}b_{ij})$ to be Hadamard product of them.

Quaternion matrix equations play important roles in both theoretical studies and numerical computations of quaternion application disciplines [2, 3, 4, 5],

⁰Supported by the National Natural Science Foundation of China(10671086) and Shandong Natural Science Foundation of China(Y2005A12).

¹E-mail: tsjemail@163.com

and have been studied by many experts [3, 4, 5]. For quaternion matrix equation

$$AXA^* = B, (1.1)$$

where $A \in \mathbf{Q}^{m \times n}$, $B \in \mathbf{Q}^{m \times m}$ are given matrices and $X \in \mathbf{Q}^{n \times n}$ denotes unknown matrix. In 1996, Wang obtained its Hermitian solution[6], after that, by applying singular value decomposition of quaternion matrices, Liu obtained its general expression of the least-square solutions under the restriction that the solution matrix X is Hemitian or Skew-Hermitian[7]. In this paper, by applying generalized singular value decomposition of quaternion matrices, we derive necessary and sufficient conditions that the equation (1.1) has an anticentro-symmetric solution, and obtain a general expression of the anti-centro-symmetric solutions. In addition, an expression of the optimal approximation solution to a given matrix is derived.

2 Quaternion anti-centro-symmetric matrix

In this section, we introduce a definition of quaternion anti-centro-symmetric matrix, and give some properties of quaternion anti-centro-symmetric matrices.

Definition 2.1 A quaternion matrix $X = (x_{ij}) \in \mathbf{Q}^{n \times n}$ is called to be a quaternion anti-centro-symmetric matrix if its entries satisfy

$$x_{ij} = -x_{n+1-i,n+1-j}, \quad i, j = 1, 2, \dots, n.$$

The set of all $n \times n$ anti-centro-symmetric matrices is denoted by $ACSQ^{n \times n}$.

Let

$$J_k = \left[\begin{array}{ccc} & & & 1 \\ & & \ddots & \\ & 1 & & \\ 1 & & & \\ \end{array} \right]_{h \times k}$$

By direct calculation, the following lemmas are obvious.

Lemma 2.1 If n = 2k,

$$ACS\mathbf{Q}^{n\times n} = \left\{ \begin{bmatrix} G & HJ_k \\ -J_kH & -J_kGJ_k \end{bmatrix} | G, H \in \mathbf{Q}^{k\times k} \right\},$$
 (2.1)

if n = 2k + 1,

$$ACS\mathbf{Q}^{n\times n} = \left\{ \begin{bmatrix} G & u & HJ_k \\ -v^T & 0 & v^TJ_k \\ -J_kH & -J_ku & -J_kGJ_k \end{bmatrix} \middle| G, H \in \mathbf{Q}^{k\times k}, u, v \in \mathbf{Q}^k \right\}.$$
(2.2)

Lemma 2.2 If $A \in \mathbb{Q}^{n \times n}$, then $A \in ACS\mathbb{Q}^{n \times n} \iff A = -J_k AJ_k$. Combing Lemma 2.1 and Lemma 2.2, we have the following result.

Proposition 2.3 If $X \in \mathbb{Q}^{n \times n}$, then

$$X \in ACS\mathbf{Q}^{n \times n} \iff X = P \begin{bmatrix} 0 & X_1 \\ X_2 & 0 \end{bmatrix} P^T,$$
 (2.3)

in which $X_1 \in \mathbf{Q}^{(n-k)\times k}$, $X_2 \in \mathbf{Q}^{k\times (n-k)}$, P satisfies that if n=2k, $P=P_1$, if n=2k+1, $P=P_2$, where

$$P_{1} = \frac{1}{\sqrt{2}} \begin{bmatrix} I_{k} & I_{k} \\ J_{k} & -J_{k} \end{bmatrix}, \quad P_{2} = \frac{1}{\sqrt{2}} \begin{bmatrix} I_{k} & 0 & I_{k} \\ 0 & \sqrt{2} & 0 \\ J_{k} & 0 & -J_{k} \end{bmatrix}.$$

Proof First of all, it is easy to verify the following equalities

$$PP^T = P^T P = I_n. (2.4)$$

We only prove the conclusion holds while n=2k and similarly while n=2k+1.

By Lemma 2.1, let

$$X = \left[\begin{array}{cc} G & HJ_k \\ -J_k H & -J_k GJ_k \end{array} \right].$$

Then

$$P^{T}XP = \frac{1}{2} \begin{bmatrix} I_{k} & J_{k} \\ I_{k} & -J_{k} \end{bmatrix} \begin{bmatrix} G & HJ_{k} \\ -J_{k}H & -J_{k}GJ_{k} \end{bmatrix} \begin{bmatrix} I_{k} & I_{k} \\ J_{k} & -J_{k} \end{bmatrix}$$
$$= \begin{bmatrix} 0 & G-H \\ G+H & 0 \end{bmatrix}.$$

Let $X_1 = G - H$, $X_2 = G + H$. By (2.4), the necessity holds. Conersely, for any $X_1 \in \mathbf{Q}^{(n-k)\times k}$, $X_2 \in \mathbf{Q}^{k\times (n-k)}$, let

$$X = P \left[\begin{array}{cc} 0 & X_1 \\ X_2 & 0 \end{array} \right] P^T.$$

It is easy to verify that $A = -J_k A J_k$, by Lemma 2.2, $A \in ACS\mathbf{Q}^{n \times n}$.

3 Anti-centro-symmetric Solutions

In this section, by applying the generalized singular value decomposition of quaternion matrices, we derive necessary and sufficient conditions that the equation (1.1) has an anti-centro-symmetric solution, and obtain a general expression of the anti-centro-symmetric solutions.

Theorem 3.1(QGSVD)^[8] If $A \in \mathbf{Q}^{m \times n}$, $B \in \mathbf{Q}^{p \times n}$ with $C^* = (A^*, B^*)$ and rank(C) = r, then there exist unitary matrices $U \in \mathbf{Q}^{m \times m}$, $V \in \mathbf{Q}^{p \times p}$ and a nonsingular matrix $Q \in \mathbf{Q}^{n \times n}$ such that

$$U^*AQ = [\Sigma_A, 0], \quad V^*BQ = [\Sigma_B, 0]$$
 (3.1)

where

$$\Sigma_{A} = \begin{bmatrix} I_{A} & & \\ & S_{A} & \\ & & 0_{A} \end{bmatrix}_{m \times r}, \quad \Sigma_{B} = \begin{bmatrix} 0_{B} & & \\ & S_{B} & \\ & & I_{B} \end{bmatrix}_{p \times r}$$
(3.2)

and $t = r - \operatorname{rank}(B)$, $s = \operatorname{rank}(A) + \operatorname{rank}(B) - r$,

$$S_A = \operatorname{diag}(\alpha_1, \alpha_2, \cdots, \alpha_s), \quad S_B = \operatorname{diag}(\beta_1, \beta_2, \cdots, \beta_s)$$

$$0 < \alpha_s \le \dots \le \alpha_2 \le \alpha_1 < 1, \quad 0 < \beta_1 \le \beta_2 \le \dots \le \beta_s < 1$$
$$\alpha_i^2 + \beta_i^2 = 1, \quad i = 1, 2, \dots, s.$$

Suppose that the equation (1.1) has an anti-centro-symmetric solution X, by Proposition 2.3, let

$$X = P \begin{bmatrix} 0 & M \\ N & 0 \end{bmatrix} P^T, \tag{3.3}$$

where $M \in \mathbb{Q}^{(n-k)\times k}$, $N \in \mathbb{Q}^{k\times (n-k)}$ and P is the same as that in (2.3).

Then the equation (1.1) can be replaced by

$$AP \begin{bmatrix} 0 & M \\ N & 0 \end{bmatrix} P^T A^* = B. \tag{3.4}$$

Let $AP = [A_1, A_2]$, where $A_1 \in \mathbb{Q}^{m \times (n-k)}$, $A_2 \in \mathbb{Q}^{m \times k}$. By (2.4), (3.4) is equivalent to

$$A_1 M A_2^* + A_2 N A_1^* = B. (3.5)$$

If A_1^* , A_2^* are corresponding to A and B in Theorem 3.1, respectively, the QGSVD of matrix pair (A_1^*, A_2^*) is as follows

$$U^* A_1^* Q = [\Sigma_{A_1^*}, 0], \quad V^* A_2^* Q = [\Sigma_{A_2^*}, 0], \tag{3.6}$$

where rank $(P^T A^*) = r$, $Q \in \mathbf{Q}^{m \times m}$, $U \in \mathbf{Q}^{(n-k) \times (n-k)}$, $V \in \mathbf{Q}^{k \times k}$, and $\Sigma_{A_1^*}$, $\Sigma_{A_2^*}$ are corresponding to those in (3.2), then (3.5) is equivalent to

$$\begin{bmatrix} \Sigma_{A_1^*}^* \\ 0 \end{bmatrix} U^*MV[\Sigma_{A_2^*}, 0] + \begin{bmatrix} \Sigma_{A_2^*}^* \\ 0 \end{bmatrix} V^*NU[\Sigma_{A_1^*}, 0] = Q^*BQ.$$
 (3.7)

Let partitioned forms of matrices U^*MV , V^*NU , Q^*BQ , respectively, be as follows

$$U^*MV = \begin{bmatrix} M_{11} & M_{12} & M_{13} \\ M_{21} & M_{22} & M_{23} \\ M_{31} & M_{32} & M_{33} \end{bmatrix}, \quad V^*NU = \begin{bmatrix} N_{11} & N_{12} & N_{13} \\ N_{21} & N_{22} & N_{23} \\ N_{31} & N_{32} & N_{33} \end{bmatrix},$$

$$Q^*BQ = \begin{bmatrix} B_{11} & B_{12} & B_{13} & B_{14} \\ B_{21} & B_{22} & B_{23} & B_{24}, \\ B_{31} & B_{32} & B_{33} & B_{34} \\ B_{41} & B_{42} & B_{43} & B_{44} \end{bmatrix}.$$

Then (3.7) is equivalent to

$$\begin{bmatrix} 0 & M_{12}S_{A_2^*} & M_{13} & 0 \\ S_{A_2^*}N_{21} & S_{A_2^*}N_{22}S_{A_1^*} + S_{A_1^*}M_{22}S_{A_2^*} & S_{A_1^*}M_{23} & 0 \\ N_{31} & N_{32}S_{A_1^*} & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} = \begin{bmatrix} B_{11} & B_{12} & B_{13} & B_{14} \\ B_{21} & B_{22} & B_{23} & B_{24}, \\ B_{31} & B_{32} & B_{33} & B_{34} \\ B_{41} & B_{42} & B_{43} & B_{44} \end{bmatrix},$$

so we have

$$\begin{cases}
M_{12} = B_{12}S_{A_2^*}^{-1}, & M_{13} = B_{13}, & M_{23} = S_{A_1^*}^{-1}B_{23}, & N_{21} = S_{A_2^*}^{-1}B_{21}, \\
M_{22} = S_{A_1^*}^{-1}(B_{22} - S_{A_2^*}N_{22}S_{A_1^*})S_{A_2^*}^{-1}, & N_{32} = B_{32}S_{A_1^*}^{-1}, & N_{31} = B_{31}, \\
B_{11} = B_{33} = 0, & B_{i4} = B_{4j} = 0, & i, j = 1, 2, 3, 4.
\end{cases}$$
(3.8)

So

$$M = U \begin{bmatrix} M_{11} & B_{12}S_{A_2^*}^{-1} & B_{13} \\ M_{21} & S_{A_1^*}^{-1}(B_{22} - S_{A_2^*}N_{22}S_{A_1^*})S_{A_2^*}^{-1} & S_{A_1^*}^{-1}B_{23} \\ M_{31} & M_{32} & M_{33} \end{bmatrix} V^*,$$
(3.9)

$$N = V \begin{bmatrix} N_{11} & N_{12} & N_{13} \\ S_{A_2^*}^{-1} B_{21} & N_{22} & N_{23} \\ B_{31} & B_{32} S_{A_1^*}^{-1} & N_{33} \end{bmatrix} U^*.$$
 (3.10)

Therefore the anti-centro-symmetric solutions of (1.1) are (3.3), where M, N are (3.9) and (3.10), respectively, and N_{22} , M_{i1} , M_{3j} , N_{i3} , N_{1j} (i, j = 1, 2, 3) are arbitrary quaternion matrices.

From the statements above, we derive following theorem.

Theorem 3.2 Let $A \in \mathbf{Q}^{m \times n}$, $B \in \mathbf{Q}^{m \times m}$ be given matrices, P is the same as that in (2.3), for $AP = [A_1, A_2]$, the QGSVD of matrix pair (A_1^*, A_2^*) is the same as those in (3.6). Then the quaternion matrix equation (1.1) has an anti-centro-symmetric solution if and only if (3.8) holds, where M, N are (3.9) and (3.10), respectively, and N_{22} , M_{i1} , M_{3j} , N_{i3} , N_{1j} (i, j = 1, 2, 3) are arbitrary quaternion matrices, in which case, the anti-centro-symmetric solutions are given by (3.3).

4 Optimal Approximation Solution

The set of anti-centro-symmetric solutions of (1.1) is denoted by Ψ . In this section, we consider a following problem under the condition that Ψ is nonempty.

Given a matrix $\widetilde{X} \in \mathbb{Q}^{n \times n}$, we find a matrix $X \in \Psi$ such that

$$||X - \widetilde{X}||_{\mathcal{F}} = \min. \tag{4.1}$$

First of all, we give a Lemma as follows.

Lemma 4.1 Let $0 < a \in \mathbb{R}$, b_1 , $b_2 \in \mathbb{Q}$. Then there exists a unique $x \in \mathbb{Q}$ such that

$$|x - b_1|^2 + |ax - b_2|^2 = \min, (4.2)$$

and x can be expressed as

$$x = \frac{b_1 + ab_2}{1 + a^2}. (4.3)$$

Proof Let $x = x_1 + x_2 \mathbf{i} + x_3 \mathbf{j} + x_4 \mathbf{k}$, $b_m = b_{m1} + b_{m2} \mathbf{i} + b_{m3} \mathbf{j} + b_{m4} \mathbf{k} (m = 1, 2)$, and

$$\varphi(x_1, x_2, x_3, x_4) = |x - b_1|^2 + |ax - b_2|^2$$

$$= (1 + a^2) \sum_{i=1}^4 x_i^2 + \sum_{m=1}^2 \sum_{i=1}^4 b_{mi}^2 - 2 \sum_{i=1}^4 b_{1i} x_i - 2a \sum_{i=1}^4 b_{2i} x_i.$$

Then our conclusion holds by

$$\frac{\partial \varphi(x_1, x_2, x_3, x_4)}{\partial x_i} = 0, \quad i = 1, 2, 3, 4.$$

Theorem 4.1 Let M, $N \in \mathbb{Q}^{n \times n}$, $D = \operatorname{diag}(d_1, d_2, \dots, d_n)$, $0 < d_i \in \mathbb{R}$ $(i = 1, 2, \dots, n)$. Then there exists a unique matrix $X \in \mathbb{Q}^{n \times n}$ such that

$$||X - M||_{\mathrm{F}}^2 + ||DXD^{-1} - N||_{\mathrm{F}}^2 = \min,$$
 (4.4)

and X can be expressed as

$$X = K \circ (MD^2 + DND), \tag{4.5}$$

where $K = (k_{ij}) \in \mathbf{R}^{n \times n}$, $k_{ij} = \frac{1}{d_i^2 + d_j^2}$, $i, j = 1, 2, \dots, n$. Proof Let $M = (m_{ij}) \in \mathbf{Q}^{n \times n}$, $N = (n_{ij}) \in \mathbf{Q}^{n \times n}$, $X = (x_{ij}) \in \mathbf{Q}^{n \times n}$, we have

$$||X - M||_{\mathrm{F}}^2 + ||DXD^{-1} - N||_{\mathrm{F}}^2 = \sum_{i=1}^n \sum_{j=1}^n (|x_{ij} - m_{ij}|^2 + |\frac{d_i x_{ij}}{d_j} - n_{ij}|^2).$$

So

$$||X - M||_{\mathrm{F}}^2 + ||DXD^{-1} - N||_{\mathrm{F}}^2 = \min \iff |x_{ij} - m_{ij}|^2 + |\frac{d_i x_{ij}}{d_i} - n_{ij}|^2 = \min,$$

by Lemma 4.1,

$$x_{ij} = \frac{d_j^2 m_{ij} + d_i d_j n_{ij}}{d_i^2 + d_j^2}, \quad i, j = 1, 2, \dots, n,$$

therefore (4.5) holds and X is unique.

Let partitioned form of matrix X be

$$\widetilde{X} = P \begin{bmatrix} \widetilde{X}_{11} & \widetilde{X}_{12} \\ \widetilde{X}_{21} & \widetilde{X}_{22} \end{bmatrix} P^T, \tag{4.6}$$

where

$$\widetilde{X}_{12} = U \begin{bmatrix} \widetilde{M}_{11} & \widetilde{M}_{12} & \widetilde{M}_{13} \\ \widetilde{M}_{21} & \widetilde{M}_{22} & \widetilde{M}_{23} \\ \widetilde{M}_{31} & \widetilde{M}_{32} & \widetilde{M}_{33} \end{bmatrix} V^*, \quad \widetilde{X}_{21} = V \begin{bmatrix} \widetilde{N}_{11} & \widetilde{N}_{12} & \widetilde{N}_{13} \\ \widetilde{N}_{21} & \widetilde{N}_{22} & \widetilde{N}_{23} \\ \widetilde{N}_{31} & \widetilde{N}_{32} & \widetilde{N}_{33} \end{bmatrix} U^*. \quad (4.7)$$

For any $A \in \mathbb{Q}^{m \times n}$, $||A||_F$ is a unitarily invariant norm[7]. From (3.9), (3.10) and (4.7) we know that the problem (4.1) is equivalent to

$$\begin{cases}
||M_{11} - \widetilde{M}_{11}||_{F}^{2} = \min, & ||N_{11} - \widetilde{N}_{11}||_{F}^{2} = \min, \\
||M_{21} - \widetilde{M}_{21}||_{F}^{2} = \min, & ||N_{12} - \widetilde{N}_{12}||_{F}^{2} = \min, \\
||M_{31} - \widetilde{M}_{31}||_{F}^{2} = \min, & ||N_{13} - \widetilde{N}_{13}||_{F}^{2} = \min, \\
||M_{32} - \widetilde{M}_{32}||_{F}^{2} = \min, & ||N_{23} - \widetilde{N}_{23}||_{F}^{2} = \min, \\
||M_{33} - \widetilde{M}_{33}||_{F}^{2} = \min, & ||N_{33} - \widetilde{N}_{33}||_{F}^{2} = \min,
\end{cases} (4.8)$$

and

$$||S_{A_1^*}^{-1}(B_{22} - S_{A_2^*}N_{22}S_{A_1^*})S_{A_2^*}^{-1} - \widetilde{M}_{22}||_F^2 + ||N_{22} - \widetilde{N}_{22}||_F^2 = \min.$$
 (4.9)

From (4.8), we have

$$\begin{cases}
M_{11} = \widetilde{M}_{11}, & M_{21} = \widetilde{M}_{21}, & M_{31} = \widetilde{M}_{31}, & M_{32} = \widetilde{M}_{32}, & M_{33} = \widetilde{M}_{33}, \\
N_{11} = \widetilde{N}_{11}, & N_{12} = \widetilde{N}_{12}, & N_{13} = \widetilde{N}_{13}, & N_{23} = \widetilde{N}_{23}, & N_{33} = \widetilde{N}_{33}.
\end{cases}$$
(4.10)

For (4.9), note that $S_{A_1^*}^{-1}S_{A_2^*} = (S_{A_1^*}S_{A_2^*}^{-1})^{-1} \in \mathbf{R}^{s \times s}$, $N_{22} \in \mathbf{Q}^{s \times s}$, then by Theorem 4.1, we have

$$N_{22} = K \circ (\widetilde{N}_{22}(S_{A_1^*}^{-1}S_{A_2^*})^2 + S_{A_1^*}^{-1}S_{A_2^*}(\widetilde{M}_{22} - S_{A_1^*}^{-1}B_{22}S_{A_2^*}^{-1})S_{A_1^*}^{-1}S_{A_2^*}), \tag{4.11}$$

where
$$K = (k_{ij}) \in \mathbf{R}^{s \times s}$$
, $k_{ij} = \frac{\alpha_i^2 \alpha_j^2}{\alpha_i^2 \beta_j^2 + \alpha_j^2 \beta_i^2}$, $i, j = 1, 2, \dots, s$.

From the statements above, we have

Theorem 4.2 Given a matrix $\widetilde{X} \in \mathbb{Q}^{n \times n}$, if the set Ψ of solutions of the equation (1.1) is nonempty, then Problem (4.1) has a unique solution $\widehat{X} \in \Psi$, furthermore, if \widetilde{X} is denoted by (4.6), then \widehat{X} can be given by (3.3), where M, N are (3.9) and (3.10), respectively, the unknown entries in them are given by (4.10) and (4.11).

References

- [1] Fuzhen Zhang, Quaternions and Matrices of Quaternions, Linear Algebra and Its Applications, 251(1997), 21-57.
- [2] S. L. Adler, Quaternionic quantum mechanics and quantum fields, Oxford U. P., New York(1994).
- [3] Tongsong Jiang, Musheng Wei, On solutions of the matrix equations X AXB = C and $X A\overline{X}B = C$, Linear Algebra and Its Applications, 367(2003), 225-233.
- [4] Tongsong Jiang, Musheng Wei, On Solution of the Quaternion Matrix Equation $X A\widetilde{X}B = C$ and Its Application, Acta Mathematica Sinica, 21(2005), 483-490.
- [5] Wajin Zhuang, The Quaternion Matrix Equation. Acta Mathematica Sinica, 30(1987),688-694.
- [6] Qingwen Wang, The Matrix Equation $AXA^* = B$ over a skew field, J. Math(PRC), 16(1996), 157-162.

- [7] Yonghui Liu, The Least-square Solutions to the Quaternion matrix Equation $AXA^H=B$, Journal of Mathematical Study, 36(2003), 145-150.
- [8] Tongsong Jiang and Musheng Wei, Equality Constrained Least Squares Problem over quaternion Field, Applied Mathematics Letters, 16(2003), 883-888.

Received: October 30, 2006