Chromatic Numbers in Some Graphs

Adel P. Kazemi

Department of Mathematics
University of Mazandaran
P. O. Box 47416-1467, Babolsar, Iran
a.kazemi@umz.ac.ir

Abstract

Let $G = (V,E)$ be a graph. A k-coloring of a graph G is a labeling $f : V(G) \rightarrow T$, where $|T| = k$ and it is proper if the adjacent vertices have different labels. A graph is k-colorable if it has a proper k-coloring. The chromatic number $\chi(G)$ is the least k such that G is k-colorable.

Here we study chromatic numbers in some kinds of Harary graphs.

Mathematics Subject Classification: 05C15

Keywords: Chromatic number; Harary’s graph

1 Introduction

A k-coloring of a graph G is a labeling $f : V(G) \rightarrow T$, where $|T| = k$ and it is proper if the adjacent vertices have different labels. A graph is k-colorable if it has a proper k-coloring. The chromatic number $\chi(G)$ is the least k such that G is k-colorable.[5]

One of the parameters related to chromatic number is defining number. Though we do not study it here but the interested reader can see [1,2,3,4].

Given $k \leq n$, place n vertices around a circle, equally spaced. If k is even, form $H_{k,n}$ by making each vertex adjacent to the nearest $k/2$ vertices in each direction around the circle. If k is odd and n is even, form $H_{k,n}$ by making each vertex adjacent to the nearest $(k-1)/2$ vertices in each direction and to the diametrically opposite vertex. In each case, $H_{k,n}$ is k-regular. When k and n are both odd, index the vertices by the integers modulo n. Construct $H_{k,n}$ from $H_{k-1,n}$ by adding the edges $i \leftrightarrow i + (n-1)/2$ for $0 \leq i \leq (n-1)/2$, [1].

It is clear that $H_{2,n} = C_n$ and $H_{m,m+1} = K_{m+1}$. And so $\chi(H_{2,n}) = 2$, $\chi(H_{2,2n+1}) = 3$, $\chi(H_{m,m+1}) = m + 1$.

2 Main Results

We new calculate chromatic numbers for some Harary graphs.

Lemma 1 i. Let $H = H_{2m,n}$ or $H_{2m+1,n}$, with $m \geq 2$. Therefore,

$$\chi(H) \geq \begin{cases} m + 2, & \text{if } m + 1 \nmid n \\ m + 1, & \text{if } m + 1 \mid n \end{cases}.$$

ii. $\chi(H_{3,2n}) \geq \chi(C_{n+1})$, $(n \geq 1)$,

iii. $\chi(H_{3,2n+1}) \geq 3$.

Proof. i. Since every $m + 1$ consecutive vertices introduce a complete subgraph K_{m+1}, so $\chi(H) \geq \chi(K_{m+1}) = m + 1$. But in this graphs the coloring function with $m + 1$ colors is a congruence function to modulo $m + 1$, therefore if $m + 1 \nmid n$, then $\chi(H) \geq m + 2$.

ii. Suppose that $V(H_{3,2n}) = \{1, 2, 3, ..., 2n\}$. Since the set of vertices $\{1, 2, ..., n+1\}$ make a cycle with length $n+1$, so $\chi(H_{3,2n}) \geq \chi(C_{n+1})$, $n \geq 1$.

iii. Let $V(H_{3,2n+1}) = \{1, 2, 3, ..., 2n + 1\}$. Since the set of vertices $\{1, n + 1, 2n + 1\}$ makes C_3, therefore $\chi(H_{3,2n+1}) \geq 3$.

Theorem 2 For every $n = (m + 1)k + r$, where $k \geq r$, we have

$$\chi(H_{2m,n}) = \begin{cases} m + 1, & \text{if } r = 0 \\ m + 2, & \text{otherwise} \end{cases}.$$

Proof. We have $n = (m + 1)(k - r) + r(m + 2)$, when $k \geq r$. If $m + 1 \mid n$, then the coloring function f to modulo $m + 1$, i.e.,

$$f(i) = j, \quad i \equiv j \pmod{m + 1}, \quad (1 \leq i \leq n),$$

is a proper coloring. So $\chi = m + 1$, by Lemma 1. Now, we suppose that $m + 1 \nmid n$. The coloring function f with criterion

$$f(i) = j, \quad i \equiv j \pmod{m + 1}, \quad 1 \leq i \leq (k - 1)(m + 1),$$

$$f(i) = j, \quad i \equiv j \pmod{m + 2}, \quad (k - 1)(m + 1) + 1 \leq i \leq n,$$

and Lemma 1 imply $\chi = m + 2$. □

We know that if $n \geq m(m + 1)$, then

$$\chi(H_{2m,n}) = \begin{cases} m + 1, & \text{if } m + 1 \mid n \\ m + 2, & \text{otherwise} \end{cases},$$

by [5]. Now, we determine $\chi(H_{2m,n})$ for some $n < m(m + 1)$.

Theorem 3 If \(n = m(m + 1) - i \) for \(2 \leq i \leq m \) and \(m \geq \lceil (1 + \sqrt{4i + 5})/2 \rceil \), then \(\chi(H_{2m,n}) = m + 2 \).

Proof. The assumptions \(n = (i - 2)(m + 1) + (m - i + 1)(m + 2) \) and \(n \geq 2m + 1 \) imply \(m^2 - m - i - 1 \geq 0 \). Since \(m + 1 \nmid n \) therefore \(\chi \geq m + 2 \). Now, the proper coloring function \(f \) with criterion

\[
\begin{align*}
f(i) = j, & \quad i \equiv j \pmod{m + 1}, \quad 1 \leq i \leq (i - 2)(m + 1), \\
f(i) = j, & \quad i \equiv j \pmod{m + 2}, \quad (i - 2)(m + 1) + 1 \leq i \leq n,
\end{align*}
\]

implies \(\chi(H_{2m,n}) = m + 2 \). \(\blacksquare \)

Theorem 4 For every \(n \geq m + 1 \), we have

\[
\chi(H_{2m+1,2n}) = \begin{cases}
 m + 1, & \text{if } 2n = (m + 1)t \text{ and } t \text{ is odd} \\
 m + 2, & \text{if } 2n = (m + 2)t, \text{ } t \text{ is odd and } m + 1 \nmid t
\end{cases}
\]

Proof. Suppose that \(2n = (m + 1)t \) and \(t \) is odd. The coloring function \(f \) to modulo \(m + 1 \) is a proper coloring. Because \(n \not\equiv 0 \pmod{m + 1} \) concludes \(f(i + n) \neq f(i) \) for \(1 \leq i \leq n \). Therefore \(\chi(H_{2m+1,2n}) = m + 1 \).

Now, we suppose that \(2n = (m + 2)t \), \(t \) is odd and \(m + 1 \nmid t \). The coloring function \(f \) to modulo \(m + 2 \) is a proper coloring. Because \(n \not\equiv 0 \pmod{m + 2} \) concludes \(f(i + n) \neq f(i) \) for \(1 \leq i \leq n \). And since \(m + 1 \nmid 2n \) so \(\chi = m + 2 \) by Lemma 1. \(\blacksquare \)

As an immediately result, we have.

Corollary 5 If \(2n = (m + 1)(m + 2)t \) such that both of which \(t \) and \(m \) are odd, then \(\chi(H_{2m+1,2n}) = m + 1 \).

If \(n = (m + 1)k + r \) where \(1 \leq r \leq m \), then

\[
\chi(H_{2m+1,2n}) = m + 1 \iff m \text{ is odd and } r = (m + 1)/2.
\]

Proof. We know \(\chi \geq m + 1 \). But \(\chi = m + 1 \) if and only if \(n \not\equiv 0 \pmod{m + 1} \) and \(f(2n) = m + 1 \). Since \(n \not\equiv 0 \pmod{m + 1} \) and \(f(2n) = f(2r) \), so \(\chi = m + 1 \) if and only if \(2r = m + 1 \). \(\blacksquare \)

Obviously, \(\chi(H_{2m+1,2n}) \geq m + 2 \) if \(m \) is even or if \(m \) is odd and \(r \neq (m + 1)/2 \), by the Proposition 7.

Theorem 6 For every \(n \geq 2 \), \(\chi(H_{3,2n+1}) = 3 \).
Proof. Let $V = \{1, 2, 3, ..., 2n + 1\}$, we know $\chi \geq 3$, by Lemma 1. We, now, consider three cases as follows.

Case 1. $2n + 1 = 4k + 3$, $k \geq 0$, $3 \mid n$.

The coloring function f with criterion

$$f(i) = \delta_i, \text{ where } \delta_i \equiv \begin{cases} i \pmod{3}, & 1 \leq i \leq n \\ i + 1 \pmod{3}, & n + 1 \leq i \leq 2n \end{cases} \text{ and } 1 \leq \delta_i \leq 3,$$

is a proper coloring with three colors. Because $f(n + 1) = 2 \neq f(2n + 1)$ and since $3 \mid n$ therefore $f(i + n) = f(i + 1) \neq f(i), 1 \leq i \leq n$.

Case 2. $2n + 1 = 4k + 5$, $k \geq 0$, $3 \nmid n = 2k + 2$.

Let $n = 3t + r$, $1 \leq r \leq 2$. The coloring function f to modulo 3 is a proper coloring. Because $f(i + n) = f(i + r) \neq f(i)$ for $1 \leq i \leq n$. Also, $f(n + 1) = r + 1 \neq f(2r + 1) = f(2n + 1)$.

Case 3. $2n + 1 = 4k + 7$, $k \geq 0$.

The coloring function f with criterion

$$f(i) = j, \quad i \equiv j \pmod{2}, \quad 1 \leq i \leq 2n, \quad 1 \leq j \leq 2, \quad f(2n + 1) = 3$$

is a proper coloring with three colors. Because $f(i + n) = f(i + 1) \neq f(i)$ for $1 \leq i \leq n$ and $f(n + 1) = 2 \neq f(2n + 1)$. So, we conclude $\chi(H_{3,2n+1}) = 3$, for $n \geq 2$.

Theorem 7 If $m + 1 \nmid n$. Then

$$\chi(H_{2m+1,2n+1}) = \begin{cases} m + 2, & m \text{ is even, } n \equiv \frac{m}{2} \pmod{m + 2}, \ n \neq \frac{m}{2} \pmod{m + 1} \\ m + 2, & m \text{ is odd, } n \equiv \frac{m+1}{2} \pmod{m + 2} \\ m + 1, & m \text{ is even, } n \equiv \frac{m}{2} \pmod{m + 1} \end{cases}.$$

Proof. In the two first cases, $m + 1 \nmid 2n + 1$ so $\chi(H_{2m+1,2n+1}) \geq m + 2$. Now, it is clear that the coloring function to modulo $m + 2$ is proper. So, $\chi = m + 2$. But in the last case, the coloring function to modulo $m + 1$ is proper and so $\chi = m + 1$.

We note that if $m \geq 3$, then $3m + 2 < m(m + 1)$ and since $m + 1 \nmid n = 3m + 2$ so $\chi \geq m + 2$. But if f is a coloring function with $m + 2$ colors, then $f(i) = i$, $1 \leq i \leq m + 1$. For the remained vertices the coloring classes are

$$cl(m + i) = \{m + 2\} \cup \{j \mid 1 \leq j \leq i - 1\}, \text{ for } i = 2, 3, ..., m + 2,$$

$$cl(2m + i) = \{j \mid i - 1 \leq j \leq m + 2\}, \text{ for } i = 3, 4, ..., m + 2.$$

We end this note with the following question.

Question. If $m \geq 3$, then one can say $\chi(H_{2m,3m+2}) \neq m + 2$?
References

Received: November 30, 2006