On Weak Central Extensions and Perfect Topological Groups

H. Sahleh

Department of Mathematics Guilan University, P.O. Box 1914, Rasht, Iran sahleh@guilan.ac.ir

Abstract

Let G be a topologically perfect group (i.e. $G = \overline{[G,G]}$) and M(G) the topological Schur multiplier of G. In this paper we show that G has a weak universal central extension whose center is the Schur multiplier.

Mathematics Subject Classification: 22A05

Keywords: Free topological group; Schur multiplier; universal extension

Introduction

Perfect groups are important object of study in group theory. For a topologist , perfect groups tend to be those that arise in certain interesting situations. For example via the study of fundamental groups. For any discrete group G, $H_1(G) = G_{ab}$. For any topological space X, $H_1(X) = \pi_1(X)_{ab}$. The case where X is the classifying space of G, the Eilenberg-Maclane space K(G,1), reduces to

$$H_1(G) = H_1(K(G,1)) = \pi_1(K(G,1))_{ab} = G_{ab}$$

Hence for classes of space X for which homology groups are easily calculated, perfect subgroups of the fundamental group have a role to play in calculation of $\pi_1(X)$. For example if $H_1(X) = 0$, then $\pi_1(X)$ is perfect.

A good invariant of any group G is its abelianization G_{ab} . The G_{ab} is characterized by the universal property that every continuous group homomorphism factors uniquely through $G \to G_{ab}$. The abelianizations are indeed

easer object to deal with than arbitrary groups. One way to get more information about a group is the case where G has trivial abelinization. In general case, the information lost in abelianization is measured by the kernel of $G \to G_{ab}$ (for more on perfect groups see [2]). In this paper we consider topologically perfect groups and will show that such a group has a universal topological extension whose kernel is the Schur multiplier.

All spaces are assumed to be Tychanov (completely regular, Hausdorff). A topological extension of G by N, denoted by (G, π) , is a short exact sequence $0 \to N \xrightarrow{i} Q \xrightarrow{\pi} G \to 0$, where i is a topological embedding onto a closed subgroup, ϕ a topological isomorphism of G/N onto G. The extension is central if N is in the center of G. We consider extensions with a continuous section i.e. $u: G \to Q$ such that $\pi u = Id$. For example, if G is a connected locally compact group, then any topological extension of G by a connected simply connected Lie group has a continuous section [S,theorem 2].

1 Perfect groups and the Schur multiplier

In this section we consider the Schur multiplier in the topological context. We recall an example which shows that a perfect topological group need not be perfect.

The free topological group is in Markov sense[5]: If X is completely regular ,then the (Markov) free topological group on X is the group F(X) equipped with the finest group topology inducing the given topology on X as a subspace. Such a topology always axists [5], and has the universal property of the following kind:every continuous mapping f from X to an arbitrary topological group G lifts to a unique continuous homomorphism

$$q: F(X) \to G$$

i.e.the restriction of g to X is f. For information on free topological groups see [5,4].

Let G be a topological group . A free topological presentation of G is a short exact sequence $0 \to R \to F \xrightarrow{\pi} G \to 0$ with a continuous section $u: G \to F$ such that $\pi u = Id_G$ where F is a free topological group in Morkov[6] sense. Consider the abelian group $R \cap [F, F]/\overline{[R, F]}$. We call this group the Schur multiplier of G denoted by

$$M(G) = R \cap [F, F] / \overline{[R, F]}$$

By Alperin et al[1], M(G) is independent of the choice of the presentation.

The following example shows that a topologically perfect group need not be perfect.

Recall that a topological group G is perfect if [G, G] is dense in G.

Example [3]. Let $\widetilde{SL_2(R)}$ be the universal covering of SL_2R , special real linear group. Let $\alpha \in SL_2(R)$ be central element of infinite order. Let α be irrational rotation in the circle group T. Consider the group

$$G = \widetilde{SL_2(R)} / < \alpha, \alpha >$$

then G is topologically perfect[see 3].

2 Central extensions and perfect groups

If G is a perfect group, then there exists a universal extension $e = (U, \pi)$ of G which has the property that for any other extension $e' = (G_1, \pi')$ there exists a unique homomorphism $\phi: U \to G_1$ with $\pi'\phi = \pi$. The kernel of π is the second homology group of G ([8],[6]). In this section we consider the idea in a topological context and will show that for a topological perfect group i.e. $G = \overline{[G, G]}$ the weak universal extension exists and its kernel is the Schur multiplier.

Definition 2.1 . A weak central extension of N by Q is an exact sequence $0 \to N \to G \to Q \to 0$ with N a central subgroup and π an onto continuous homomorphism (not necessarily open). A (weak) central extension of N by Q is (weak) universal if for any other (weak) central extension , $0 \to N' \to G' \xrightarrow{\pi'} Q \to 0$ there is one and only one continuous homomorphism from G to G' over Q such that the following diagram commutes:

$$\pi'\beta=\pi$$

Lemma 2.2 Let $e = (G, \pi)$ and $e' = (G', \pi')$ be two central extensions of Q. If G is topologically perfect i.e. $G = \overline{[G, G]}$, then there is at most on continuous homomorphism from G' over Q.

Proof. Let f_1 , f_2 be two continuous homomorphisms from G to G' over Q i.e. $\pi f_1 = \pi, \pi' f_2 = \pi$. Let $y, z \in G$. Now $\pi' f_1(y) = \pi$ and $\pi' f_2(y) = \pi$. Hence

, there are c,c' in the kernel of Q such that $f_1(y) = f_2(y)c$, $f_1(z) = f_2(z)c'$. Since f_1 and f_2 are homomorphisms and c,c' are in the center of G' we have,

$$f_{1}[y, z] = f_{1}[yzy^{-1}z^{-1}]$$

$$= f_{1}(y)f_{1}(z)f_{1}(y^{-1})f_{1}(z^{-1})$$

$$= f_{2}(y)cf_{2}(z)c'c^{-1}f_{2}(y)^{-1}c'^{-1}f_{2}(z)^{-1}$$

$$= f_{2}(y)f_{2}(z)f_{2}(y^{-1})f_{2}(z^{-1})$$

$$= f_{2}(yzy^{-1}z^{-1}) = f_{2}[y, z]$$

Hence f_1, f_2 agree on the commutator subgroup of G. Since [G, G] is dense in G so f_1, f_2 are the same on G.

Lemma 2.3 Let $e = (G, \pi)$ be a central extension of Q. If G is not topologically perfect then for a suitably chosen $e' = (G', \pi')$ a central extension of Q, there exists more than one continuous homomorphism from G to G' over Q.

Proof. If G is not topologically perfect then there is a non zero continuous homomorphism from G to some abelian topological group (for example $\phi: G \to G/\overline{[G,G]}$). Let $e': 0 \to N' \to G' \to Q \to 0$ be the split extension of N' by Q with $\pi'(q,n')=q, q\in Q, n'\in N'$. Clearly e is central extension. Setting $f_1(g)=(\pi(g),1)$ and $f_2(g)=(\pi(g),\phi(g))$, we obtain two distinct continuous homomorphisms from G to G' over Q because for any $g\in G$,

$$\pi' f_1(g) = \pi'((\pi(g), 1) = \pi(g)$$
$$\pi' f_2(g) = \pi'(\pi(g), \phi(g)) = \pi(g)$$

Since π and ϕ are continuous then f_1 , f_2 are continuous. These two maps are distinct because ϕ is a non zero homomorphism

$$\begin{array}{ccccc} N & \rightarrow & G & \stackrel{\pi}{\rightarrow} & Q \\ \downarrow & \swarrow & f_1 \downarrow \downarrow f_2 & & \parallel \\ N' & \rightarrow & G & \stackrel{\pi'}{\rightarrow} & Q \end{array}$$

Lemma 2.4 If $e = (G, \pi)$ is a central extension of a topologically perfect group Q i.e. $Q = \overline{[Q,Q]}$, then $G = \overline{[G,G]}$ is topologically perfect and maps onto Q. In particular, $(G', \pi|_{G'})$ is a weak central extension.

Proof. Let $e=(G,\pi)$ be a central extension of Q. since π is a homomorphism ,it maps [G,G] onto [Q,Q]. Let $z\in G, \pi(z)=y$ and V be a

neighborhood of z. So $y \in \overline{[Q,Q]}$. Hence there is a sequence (y_n) in [Q,Q] such that y_n converges to y. Since π is open $\pi(V)$ is an open set containing y. So $\pi(V) \cap [Q,Q] \neq \emptyset$.

Therefore, $V \cap [G,G] \neq \emptyset$. It follows that z is a limit point of [G,G] i.e. $z \in \overline{[G,G]}$. Thus every $g \in G$ can be written as a product x'c with $x' \in \overline{[G,G]}$ and $c \in Ker\pi$. Therefore, if $g_1, g_2 \in G$, then $g_1 = x_1'c_1, g_2 = x_2'c_2$

$$[g_1, g_2] = [x_1^{'}c_1, x_2^{'}c_2] = [x_1^{'}, x_2^{'}]$$

i.e.
$$[G,G] = [G',G']$$
. Hence $G' = \overline{[G,G]} = \overline{[G',G']}$.

Now we define the $backward\ induced\ extension$ in the category of topological groups.

Let $\nu:Q_1\to Q$ and $\pi:G\to Q$ be continuous . The backward extension of $\{\nu,\pi\}$ is a group $G^{(2)}$ and two continuous homomorphisms $\pi_0:G^{(2)}\to Q$ and $\beta:G\to Q$ such that $\pi_0\nu=\beta\pi$ and with the property that given any topological group Γ and $\alpha:\Gamma\to G^{(2)}, \delta:\Gamma\to G$ such that $\nu\alpha=\pi\delta$ then there exists a unique continuous homomorphism $\gamma:\Gamma\to G^{(2)}$ so that $\delta=\beta\gamma$ and $\alpha=\pi_0\gamma$. By [C] backward extension exists. Note that $G^{(2)}=\{(g,u);\nu(u)=\pi(g)\}$ and it is a subgroup of $G\times Q_1$ together with the restriction of cononical projection from $G\times Q_1$ onto G and G0 respectively. Remark. If the topological extension G1 extension G2 defined by G3 and G4 is a continuous section G5.

Lemma 2.5 A central extension (U, ν) of Q is universal if and only if U is topologically perfect and every central extension of U splits.

Proof. Suppose that every central topological extension of U splits and U is topologically perfect. Let $e: N \to G \to Q$ be a central exrension of N by G. Now we form the backward extension of e as follows:

 $\nu \pi_0 = \pi \beta$. By [4,lemma 3.3], (*) is computative with the topological exact rows. The top row of (*) is central since N is a U-module via π_0 and a trivial Q-module. Hence there is a continuous homomorphism $s: U \to G^{(2)}$ with $\pi s = 1_U$. Now $(\pi(\beta s))(u) = \nu(\pi_0 s(u)) = \nu(u)$, $u \in U$ and βs is a continuous homomorphism. By lemma 2.2, βs is unique. Therefore (U, ν) is the universal

central extension of Q.

Now let (U, ν) be the universal central extension of Q. By lemma 2.3, U is topologically perfect. We show that every central extension of U splits. Given a central extension (G, π) of U, we will show that $(G, \nu\pi)$ is a central extension of Q. For if $\nu(\pi(g_0)) = 1$, then $\pi(g_0)$ is in the center of U. Hence, the map $f: G \to G$, $f(g) = g_0 g g_0^{-1}$, $g \in G$ is a continuous homomorphism because

$$\pi(f(g)) = \pi(g_0 g g_0^{-1}) = \pi(g_0) \pi(g) \pi(g_0^{-1}) = \pi(g), g \in G$$

Restricting to $G' = \overline{[G,G]}$ by lemmas 2.4 and 2.2 the resulting homomorphism from G' to G over U is the identity. Thus g_0 commutes with elements of G'. But every $g \in G$ can be expressed as $g = g'c, g' \in G', c \in kerf$ For if $g \in G$, since π maps $G' = \overline{[G,G]}$ onto U there exists $g' \in G'$ with $\pi(g) = \pi(g')$. Hence g = g'c for $c \in ker\pi$. So g_0 commutes with all elements of G. Since π, ν are open onto continuous homomorphisms so is $\nu\pi$. Thus $(G, \nu\pi)$ is a central extension of G. Since G is universal, there is a continuous homomorphism $G : U \to G$ over G. The map G is a continuous map from G to G over G thence equals to the identity. Thus G is a splitting. Therefore, every central extension of G splits.

The next theorem gives the sufficient and necessary condition for a topological group to have the weak universal extension.

Theorem 2.6 A topological group Q admits the weak universal central extension if and only if Q is topologically perfect.

Proof. Let (U, ν) be the weak universal central extension of Q. By lemma 2.3 ,U is topologically perfect. By the continuity of ν

$$\nu\overline{[U,U]}\subset\overline{\nu[U,U]}=\overline{[Q,Q]}$$

On the other hand $\nu \overline{[U,U]} = Q$. Hence $Q = \overline{[Q,Q]}$.

Conversely, if Q is perfect choose a free topological presentation of Q,

$$e: 0 \to R \to F \to Q \to 0$$

and consider

$$0 \to R/\overline{[R,F]} \to F/\overline{[R,F]} \to Q \to 0$$

the centralizer of (e). By lemma 2.4, $\overline{[F/\overline{[R,F]},F/\overline{[R,F]}]} = \overline{[F,F]/\overline{[R,F]}} \to Q$ is a weak central extension . By [6], [F,F] is closed in F, so $[F,F]/\overline{[R,F]}$ is closed. Hence

$$[F,F]/\overline{[R,F]} = \overline{[F,F]/\overline{[R,F]}}$$

We claim that $[F,F]/\overline{[R,F]} \to Q$ is the weak universal central extension of Q. Given any weak central extension (G,π) of Q with a continuous section $S:Q\to G$, since F is a free topological group there is a continuous homomorphism $\phi:F\to G$ over Q. Also $\phi[R,F]=1$ since (G,π) is central. Now by the continuity of ϕ , $\phi[\overline{R,F}]=1$. Thus ϕ induces a continuous homomorphism from $F/\overline{[R,F]}$ to G over Q. Restricting this map to $[F,F]/\overline{[R,F]}$, we obtain the required homomorphism from $[F,F]/\overline{[R,F]}$ to G over G which is unique by lemma 2.2.

Proposition 2.7 Let Q be a perfect topological group and the weak universal central extension (U, π) of Q exists and has a continuous section. Then the kernel of π is isomorphic to M(Q), the Schur multiplier of Q.

Proof. Let $N \to U \xrightarrow{\pi} Q$ be the universal central extension of Q with a section $S: Q \to U$, $\pi S = Id$. By lemma 2.5, U is perfect and every central extension of U splits. By [1,theorem 2.3] $Hom_C(M(U),M(U))=0$. This set contains the identity map, hence M(U)=0. By [1, proposition 1.8] there is an exact sequence

$$M(U) \to M(Q) \to N \to U_{ab} \to Q_{ab} \to 0$$

But M(U) = 0 and, $U_{ab} = 0$, $Q_{ab} = 0$ because they are perfect. Therefore, M(Q) is isomorphic to N.

References

- [1] R.C. Alperin and H. Sahleh, Hopf,s Formula and the Schur multiplicator for topological groups, Kyungpook Math. Journal, 31 (1) (1991), 35-71.
- [2] A.J. Berrick, A topologist, s view of perfect groups and acyclic groups, in :Invitations to Geometry and Topology ,in:Oxf.Texts Math.,vol. 7 (2002) ,Oxford University Press, Oxford, 1-28.
- [3] E. Breuilard and T. Gelander, On dense free subgroups of Lie groups, J. Alg., 261 (2)(2003), 48-462.
- [4] J.M. Castillo, On the "three-space" problem for locally quasi-covex topological groups, Arch. Math., 74 (2000), 253-262.
- [5] E. Hewitt and K.A. Ross, Abstract Harmonic Analysis I, Academic Press, New York, 1963.

[6] A.A. Markov, On free topological groups, Amer. Math. Soc. Transl., 30(1950), 11-88.

- [7] C. Roger, Extensions centrales d algebres de groupes de Lie de dimension infinite, algebres de Virasoro et generalisation, Rep. Math. Phys. 35 (1995), 225-266.
- [8] A. Shtern, Remarks on Pseudocharacters and the Real Continuous Bounded Cohomology of Connected Locally Compact Groups, Annals of Global analysis and Geometry, 20 (2001), 199-221.
- [9] C.A. Weibel, An introduction to homological algebra, Cambridge Stud. Adv. Math., 38 Cambridge Univ.Press, 1995.

Received: August 7, 2006