Real Divisors of a Projective Variety
Containing a Given Scheme

E. Ballico

Dept. of Mathematics
University of Trento
38050 Povo (TN), Italy
ballico@science.unitn.it

Abstract. Let \(Z \subset X \subset \mathbb{P}^n \) be real projective schemes with \(X \) integral and \(Z \) of codimension at least 2 in \(X \). Here we find a real hypersurface of \(X \) containing \(Z \), with bounded degree and with other properties.

Mathematics Subject Classification: 14P05; 14P20

Keywords: real algebraic variety; real divisor; degree of a hypersurface

1. Introduction

Let \(Z \subset X \subset \mathbb{P}^n \) be real projective schemes with \(X \) integral and \(Z \) of codimension at least 2 in \(X \). Here (under suitable assumptions) we find a real hypersurface \(X(f) \) of \(X \) containing \(Z \), with bounded degree and with other properties. In Theorem 1 we consider the case \(X(f)(\mathbb{R}) = Z(\mathbb{R}) \). In Theorem 2 we find \(X(f) \) whose real locus intersects many connected components of \(X_{reg}(\mathbb{R}) \) for the semialgebraic topology.

Lemma 1. Let \(X \subset \mathbb{P}^n \) be an integral projective variety defined over an algebraically closed field \(\mathbb{K} \) with \(\text{char}(\mathbb{K}) = 0 \) and \(Z \subset X \) a closed subscheme with codimension \(c \geq 2 \). Let \(\mu \) denote the minimal integer \(t \) such that \(Z_{\text{red}} \) is the set-theoretic base locus of \(H^0(\mathbb{P}^n, \mathcal{I}_Z(t)) \). Fix a finite \(S \subset Z_{\text{reg}} \cap X_{\text{reg}} \) (we allow the case \(S = \emptyset \)). Assume also that the scheme-theoretic base locus of \(H^0(\mathbb{P}^n, \mathcal{I}_Z(t)) \) is equal to \(Z \) in a neighborhood of \(S \). Fix an integer \(e \) such that \(1 \leq e \leq c - 1 \), an integer \(d \geq \mu \) and a general \(e \)-dimensional linear subspace of \(H^0(\mathbb{P}^n, \mathcal{I}_Z(d)) \). Let \(A(V, X) \) the scheme-theoretic intersection of \(X \) with the codimension \(e \) and degree \(d^e \) complete intersection \(A(V) := \{ f = 0 \}_{f \in V\setminus\{0\}} \).

(i) \(A(V, X) \) has dimension \(\dim(X) - e \) and it is smooth at each point of \(X_{\text{reg}} \setminus Z \) and at each point of \(S \).

1The author was partially supported by MIUR and GNSAGA of INdAM (Italy).
(ii) If \(d > \mu \), then \(A(V,X) \) is integral;
(iii) Assume \(d = \mu \); \(A(V,X) \) is integral if for a general \(P \in X \) the base locus of \(H^0(\mathcal{I}_Z \cap \mathcal{I}(P)) \) has dimension at most \(\dim(X) - e - 1 \).

Proof. Part (i) outside \(S \) follows from Bertini’s theorem ([3], part 2) of Th. 6.3. Since \(S \) is finite, it is sufficient to notice that for general \(V \) and any fixed \(P \in Z \), \(T_P V \) is transversal to \(T_P X \) by our assumption on \(S \). Part (iii) for an arbitrary \(d \geq \mu \) is true by another theorem of Bertini ([3], part 4) of Th. 6.3). It is easy to check that if \(d > \mu \), then the condition in (iii) is satisfied (use reducible hypersurfaces, union of hypersurfaces of degree \(\mu \) containing \(Z \) and arbitrary degree \(d - \mu \) hypersurfaces. Part (ii) for \(S = \emptyset \) was also checked in [1], proof of Th. 1.2).

Quite often, but not always (e.g. if \(X = \mathbb{P}^n \) and \(Z \) is a point) in part (iii) the “only if” assertion holds.

Remark 1. Take \(X, Z, S, d \) as in Lemma 1. Assume that \(X, Z, S \) are defined over a real closed field \(\mathcal{R} \) and that \(\mathbb{K} \) is the algebraic closure of \(\mathcal{R} \). Notice that \(H^0(\mathbb{P}^n, \mathcal{I}_Z(d)) = H^0(\mathbb{P}^n_{\mathbb{R}}, \mathcal{I}_Z(d)) \otimes_{\mathbb{R}} \mathbb{K} \), because any extension of fields is flat and cohomology commutes with base change ([2], Prop. III.9.3). Since \(H^0(\mathbb{P}^n_{\mathbb{R}}, \mathcal{I}_Z(t)) \) is Zariski dense in \(H^0(\mathbb{P}^n, \mathcal{I}_Z(d)) \), and smoothness is an open condition, we may take \(V \) as in the statement of Lemma 1 with \(V \) defined over \(\mathcal{R} \) and (in parts (ii) and (iii)) with \(A(V,X) \) geometrically irreducible.

Theorem 1. Let \(\mathcal{R} \) be a real closed field and \(\mathbb{K} \) its algebraic closure. Let \(X \subset \mathbb{P}^n \) (resp. \(Z \subset X \)) a geometrically integral (resp. a closed subscheme of codimension at least 2) defined over \(\mathcal{R} \). Let \(\mu \) denote the minimal integer \(t \) such that \(Z_{\text{red}} \) is the set-theoretic base locus of \(H^0(\mathbb{P}^n, \mathcal{I}_Z(t)) \). Fix an even integer \(k \geq 2\mu \). If \(k = 2\mu \) assume that for a general \(P \in X(\mathbb{K}) \) the base locus of \(H^0(\mathbb{P}^n, \mathcal{I}_Z \cap \mathcal{I}(P)) \) in \(X(\mathbb{K}) \) has dimension at most \(\dim(X) - 2 \). Then there is \(f \in H^0(\mathbb{P}^n_{\mathbb{R}}, \mathcal{I}_Z(k)) \) such that \(X(f) := X \cap \{ f = 0 \} \) is a geometrically integral hypersurface of \(X \), \((X(\mathbb{K})_{\text{reg}} \cap X(f)) / Z(\mathbb{K}) \subseteq X(f)(\mathbb{K})_{\text{reg}} \) and \(X(f)(\mathcal{R}) = Z(\mathcal{R}) \).

Proof. Set \(d := k/2 \). Take a basis \(g_1, \ldots, g_s \) of \(H^0(\mathbb{P}^n_{\mathbb{R}}, \mathcal{I}_Z(k)) \). Hence \(Z_{\text{red}} = \{ g_1 = \cdots = g_s = 0 \} \). Apply the proofs of Lemma 1 and of Remark 1 for \(e = 1 \) to the \(\mathbb{K} \)-vector space spanned by \(g_1^2, \ldots, g_s^2 \). Since \((\mathcal{R}^n_{\mathbb{R}})_{\text{Zar}} \) is Zariski dense in \(\mathbb{K}^n \) we obtain the existence of \(c_1 \in \mathcal{R} \), \(1 \leq i \leq s \), \(c_i > 0 \) for all \(i \), such that, setting \(f = \sum_{i=1}^s c_i g_i^2 \), \(X(f) := X \cap \{ f = 0 \} \) is a geometrically integral hypersurface of \(X \) and \((X(\mathbb{K})_{\text{reg}} \cap X(f)) / Z(\mathbb{K}) \subseteq X(f)(\mathbb{K})_{\text{reg}} \). Since \(c_i > 0 \) for all \(i \) and each \(g_i \) is real, we have \(\{ f = 0 \}(\mathcal{R}) = Z(\mathcal{R}) \). Hence \(X(f)(\mathcal{R}) = Z(\mathcal{R}) \).

Notation 1. Let \(X \subset \mathbb{P}^n \) be an integral projective variety defined over an algebraically closed field with \(\text{char}(\mathbb{K}) = 0 \) and \(Z \subset X \) a closed subscheme with codimension \(c \geq 2 \). For every integer \(d \) let \(W(X,d) \) denote the image of the restriction map \(H^0(\mathbb{P}^n, \mathcal{O}_{\mathbb{P}^n}(d)) \to H^0(\mathbb{P}^n, \mathcal{O}_X(d)) \). Set \(W(X,d,Z) := W(X,d) \cap H^0(X, \mathcal{I}_Z, dx)(d) \), \(w(X,d) := \dim(W(X,d)) \) and \(w(X,d,Z) := \dim(W(X,d,Z)) \).
Let $\alpha(X,d)$ (resp. $\alpha(X,d,Z)$) denote the maximal integer $t \geq 0$ such that for a general $S \subset X$ the base locus of $W(X,d) \cap H^0(X,\mathcal{I}_S(d))$ (resp. $W(X,d,Z) \cap H^0(X,\mathcal{I}_S(d))$) does not contain a codimension 1 subscheme of X with the convention $\alpha(X,d) = -\infty$ (resp. $\alpha(X,d,Z) = -\infty$) if no such integer $t \geq 0$ exists.

Remark 2. Let \mathcal{R} be a real closed field with algebraic closure \mathbb{K}. In the setup of Notation 1 assume that X,Z and the embedding $X \subset \mathbb{P}^n$ are defined over \mathcal{R}. Assume $X_{\text{reg}}(\mathcal{R}) \neq \emptyset$. The last assumption implies that $X_{\text{reg}}(\mathcal{R})$ is Zariski dense in $X(\mathbb{K})$. Hence if $\alpha(X,d)$ (resp. $\alpha(X,d,Z)$) is finite, then $\alpha(X,d)$ (resp. $\alpha(X,d,Z)$) is the maximal integer $t \geq 0$ such that there is $S \subset X_{\text{reg}}$ such that $\sharp(S) = t$, $\dim(W(X,d) \cap H^0(X,\mathcal{I}_S(d))) = w(X,d) - t$ (resp. $\dim(W(X,d,Z) \cap H^0(X,\mathcal{I}_S(d))) = w(X,d,Z) - t$ and the base locus of $W(X,d,Z) \cap H^0(X,\mathcal{I}_S(d))$ (resp. $W(X,d,Z) \cap H^0(X,\mathcal{I}_S(d))$ does not contain a codimension 1 subscheme of X. Let T_1, \ldots, T_s be the connected components of $X_{\text{reg}}(\mathcal{R})$ in the semialgebraic topology. If $\mathcal{R} = \mathbb{R}$, then T_1, \ldots, T_s are the connected components of $X_{\text{reg}}(\mathcal{R})$ in the euclidean topology. Fix integers $t_i \geq 0$, $1 \leq i \leq s$, such that $t_1 + \cdots + t_s = t$. Since each T_i is Zariski dense in $X(\mathbb{K})$, we may find S as above and such that $\sharp(S \cap T_i) = t_i$ for all i.

Lemma 2. Let $X \subset \mathbb{P}^n$ be an integral projective variety defined over an algebraically closed field \mathbb{K} with char(\mathbb{K}) = 0 and $Z \subset X$ a closed subscheme with codimension $c \geq 2$. Fix an integer $d > 0$ such that $h^i(\mathbb{P}^n, \mathcal{I}_Z(d-i)) = 0$ for all $i > 0$. Then $\alpha(X,d+1,Z) \geq w(X,d-1,Z).

Proof. Fix a general $S \subset X$ such that $\sharp(S) = w(X,d-1,Z)$. The generality of S and the definition of the integer $w(X,d-1,Z)$ implies $h^0(\mathbb{P}^n, \mathcal{I}_{Z \cup S}(d-1)) = h^0(\mathbb{P}^n, \mathcal{I}_Z(d-i)) - w(X,d-1,Z)$. Since $h^1(\mathbb{P}^n, \mathcal{I}_Z(d-1)) = 0$, we get $h^1(\mathbb{P}^n, \mathcal{I}_{Z \cup S}(d-1)) = 0$. Since S is finite, we have $h^i(\mathbb{P}^n, \mathcal{I}_{Z \cup S}(d-i)) = h^i(\mathbb{P}^n, \mathcal{I}_Z(d-i))$ for all $i \geq 2$. Hence $h^i(\mathbb{P}^n, \mathcal{I}_{Z \cup S}(d-i)) = 0$ for all $i > 0$. By Castelnuovo-Mumford’s lemma the homogeneous ideal of $S \cup Z$ in \mathbb{P}^n is generated by forms of degree at most d. Apply part (ii) of Lemma 1.

Remark 3. Take X,Z,d as in Lemma 2 and a general $S \subset X$ such that $\sharp(S) = w(X,d-1,Z)$. We saw in the proof of Lemma 2 that $h^i(\mathbb{P}^n, \mathcal{I}_{Z \cup S}(d-i)) = 0$ for all $i > 0$. By Castelnuovo-Mumford’s lemma the homogeneous ideal of $S \cup Z$ in \mathbb{P}^n is generated by forms of degree at most d. Thus we may apply part (i) of Lemma 1 to the set $Z' := Z \cup S$. As remarked in Lemma 2 we apply part (ii) of Lemma 1 to the set Z' and the integer $d' := d + 1$ (and hence to all higher integers).

Lemma 3. Fix an integral projective variety $X \subset \mathbb{P}^n$ defined over an algebraically closed field \mathbb{K} with char(\mathbb{K}) = 0, an integer $d > 0$ and a vector space $V \subset H^0(X,\mathcal{O}_X(d))$ such that $\dim(V) \geq 2$. Then fix a general $P \in X$ and set $V(-P) := \{f \in V : f(P) = 0\}$. Let ϕ_V (resp. $\phi_{V(-P)}$) be the rational map on X induced by the linear system $|V|$ (resp. $|V(-P)|$). Hence
\[\dim(V(-P)) = \dim(V) - 1. \] We have \[\dim(\phi_{V(-P)}(X) = \dim(\phi_{V}(X)) \] if and only if the rational map \(\phi_{V} \) from \(X \) into \(P(V^*) \) is not dominant.

Proof. The equality \(\dim(V(-P)) = \dim(V) - 1 \) is obvious, by the generality of \(P \). Let \(Y \subseteq P(V^*) \) denote the closure of \(\text{Im}(\phi_{V}) \) in \(P(V^*) \). The linear projection of \(Y \) from \(Q \in Y \) maps \(Y \) into a lower dimensional variety if and only \(Y \) is a cone with vertex containing \(Q \). Since \(Y \) spans \(P(V^*) \), general \(A \in Y \) is a vertex of \(Y \) if and only if \(Y = P(V^*) \).

Remark 4. In the set-up of Lemma 3 \(\phi_{V} \) is not dominant if \(\dim(V) \geq \dim(X) + 2 \).

Theorem 2. Take the real closed field \(R \) as the base field. Let \(X \subset P^n \) be a geometrically integral variety and \(Z \subset X \) a closed subscheme with codimension at least 2 in \(X \). Let \(T_1, \ldots, T_s \) denote the connected components of \(X_{\text{reg}}(R) \) in the semialgebraic topology. Fix integers \(d, k \) such that \(h^i(P^n, I_Z(d-i)) = 0 \) for all \(i > 0 \) and \(d \geq k + 1 \). Let \(w(X, k, Z) \) denote the dimension of the image of the restriction map \(H^0(P^n, I_Z(k)) \to H^0(X, \mathcal{O}_X(d)) \). If \(d = k + 1 \), then assume \(w(X, k, Z) \geq \dim(X) + 2 \). Set \(a := \min\{s, w(X, k, Z)\} \). Then there exists a degree \(d \) hypersurface \(Y \subset P^n \) defined over \(R \) such that \(Z \subset Y, X \cap Y \) is geometrically integral, \(X_{\text{reg}} \cap Y \setminus Z \) is smooth and \(Y \) intersects \(T_1, \ldots, T_a \).

Proof. Apply Lemma 3 and Remarks 2 and 4.

Remark 5. If \(X_{\text{reg}}(R) \cap Z_{\text{reg}}(R) \neq \emptyset \), then we may apply part (i) of Lemma 1 and get \(X(f) \) as in the statement of Theorem 2 and smooth at a finite (prescribed in advance) set of \(X_{\text{reg}}(R) \cap Z_{\text{reg}}(R) \).

Remark 6. In the statements of Theorems 1 and 2 assume that \(Z \) has codimension \(c \geq 3 \) in \(X \). Fix an integer \(e \) such that \(2 \leq e \leq c - 1 \). Iterating the proof of Theorem 2 we may also find a complete intersection \(Y \) of \(e \) hypersurfaces of degree \(d \) and with properties listed in the statement of Theorem 2. This extension of Theorem 1 is even easier.

References

Received: October 7, 2006