The Maps Preserving Approximation

H. Mazaheri and M. Hossein Zadeh

Department of Mathematics Yazd University, Yazd, Iran hmazaheri@yazduni.ac.ir

Abstract

The purpose of this paper is to introduce and discuss the concept of the maps which preserve approximation. We show that if a operator on a normed space is an isometry then preserves all approximation property, every linear operator preserving approximation is an isometry multiplied by a constant.

Mathematics Subject Classification: 41A65, 46B50, 46B20, 41A50

Keywords: Approximation, Preserve approximation, Orthogonal subspace, Chebyshev subspaces, Proximinal space

1. Introduction

Suppose X is a normed linear space and $x, y \in X$, x is said to be orthogonal to y and is denoted by $x \perp y$ if and only if $||x|| \leq ||x + \alpha y||$ for all scalar α . If G_1 and G_2 are subsets of X, it is defined $G_1 \perp G_2$ if and only if for all $g_1 \in G_1, g_2 \in G_2, g_1 \perp g_2$. (see [1]). Let G be a subspace of X, it is defined the set of the metric complemented

$$\hat{G} = \{x \in X : x \perp G\} = \{x \in X : ||x|| = ||x + G||,$$

and the set of the cometric complement

$$\breve{G} = \{x \in X: \ G \bot x\}.$$

We know that a point $g_0 \in G$ is said to be a best approximation (resp. best coapproximation) for $x \in X$ if and only if $||x - g_0|| = ||x + G|| = dist(x, G)$ (resp. $||g_0 - g|| \le ||x - g|| \forall g \in G$). It can be easily proved that g_0 is a best approximation (resp. best coapproximation) for $x \in X$ if and only if $x - g_0 \in \hat{G}$ (resp. $x - g_0 \in \check{G}$). The set of all best approximations (resp.

best coapproximations) of $x \in X$ in G is shown by $P_G(x)$ (resp. $R_G(x)$). In other words,

$$P_G(x) = \{g_0 \in G : x - g_0 \in \hat{G}\}\$$

and

$$R_G(x) = \{ g_0 \in G : x - g_0 \in \check{G} \}.$$

If $P_G(x)$ (resp. $R_G(x)$) is non-empty for every $x \in X$, then G is called an Proximinal (resp. coproximinal) set. The set M is Chebyshev (resp. cochebyshev) if $P_G(x)$ (resp. $R_G(x)$) is a singleton set for every $x \in X$. (see [5-13])

A proximinal subspace G is called quasi-Chebyshev if and only if $P_G(x)$ is compact, for all $x \in X$ (see [3-4]).

Suppose G is a subspace of X then G is called orthogonal complemented subspace, if either G is Chebyshev and \hat{G} is a subspace of X or G is cochebyshev and \check{G} is a subspace of X.

2. Preserves approximation

In this section we shall obtain characterization of preserving approximation maps.

Lemma 2.1. Let X be a normed linear space. If $T: X \to X$ is an isometry operator, then for all subspace G of X and all $x \in X$,

$$T(P_G(x)) = P_{T(G)}(T(x))$$
 and $T(R_G(x)) = R_{T(G)}(T(x))$.

Proof. We have for all $x \in X$, ||T(x)|| = ||x||, therefore for all $x \in X$ and all subspace G of X and $g, g_0 \in G$,

$$||x - g_0|| \le ||x - g|| \Leftrightarrow ||T(x) - T(g_0)|| \le ||T(x) - T(g)||.$$

Definition 2.2. Suppose X, Y are two linear normed spaces. A map $T: X \to Y$ is called preserving approximation (resp. preserving coapproximation) if and only if for all subspace G of X and all $x \in X$,

$$T(P_G(x)) = P_{T(G)}(T(x)) \ (resp. \ T(R_G(x)) = R_{T(G)}(T(x)).$$

Corollary 2.3. Let X be a normed linear space. Every isometry operator $T: X \to X$ is preserving approximation (resp. preserving coapproximation).

Theorem 2.4. Suppose X, Y are two linear normed spaces and $T: X \to Y$ is a linear map which is preserves approximation (resp. preserves coapproximation).

a) Suppose G is a subspace of X, then G is proximinal (resp. coproximinal) of X, if and only if T(G) is proximinal (resp. coproximinal) of Y.

- **b)** Suppose G is a subspace of X, then G is Chebyshev (resp. cochebyshev) if and only if T(G) is Chebyshev (resp. cochebyshev.
- c) If T is linear, then $\forall x, y \in X \ x \perp y \Longrightarrow T(x) \perp T(y)$. (T is called preserving orthogonality).
 - **d)** For a subspace G of X, $T(\widehat{G}) = \widehat{T(G)}$ (resp. $T(\check{G}) = T(\check{G})$).
- e) Suppose G is a subspace of X, then G is orthogonality complemented in X if and only if T(G) is orthogonality complemented in Y.
- **f**) Suppose G is a subspace of X, if T is a cotinuous and onto preserves approximation map, then G is quasi chebyshev if and only if T(G) is quasi Chebyshev.

Proof. We can easily prove (a), (b), (d), (e). We prove the parts (c) and (f).

c) Suppose T is a preserves approximation, if $x, y \in X$ and $x \perp y$, then $0 \in P_{< y>}(x)$. Therefore $0 = T(0) \in P_{T(< y>)}(T(x))$, since T is linear, T(< y >) = < T(y) >. Hence $T(x) \perp T(y)$

Now suppose T is a preserves approximation, if $x, y \in X$ and $x \perp y$, then $0 \in R_{\langle x \rangle}(y)$. Therefore $0 = T(0) \in R_{T(\langle x \rangle)}(T(y))$, since T is linear, $T(\langle x \rangle) = \langle T(x) \rangle$. Hence $T(x) \perp T(y)$.

f) Let $z \in Y$ and $\{u_n\} \subseteq P_{T(G)}(z)$. Since T is onto, we have z = T(x) for some $x \in X$, therefore $\{u_n\} \subseteq T(P_G(x))$. Then there exists a sequence $\{v_n\} \subseteq P_G(x)$ such that $u_n = T(v_n)$. Since G is quasi Chebyshev, the set $P_G(x)$ is compact. Hence there exists subsequence $\{v_{n_k}\}_{k\geq 1}$ of $\{v_n\}$ and $v_0 \in X$ such that $v_{n_k} \to v_0$. Sinve T is continuous, $u_{n_k} = T(v_{n_k}) \to u_0 = T(v_0)$. Therefore $P_{T(G)}(z)$ is compact.

Theorem 2.5. Let X be a normed linear space and the operator $T: X \to X$ be preserving approximation, then T = kU such that $k \in R$ and U is an isometry.

Proof. We know that T is preserving approximation, from Theorem 2.4, T is preserving orthogonality. From [1], T is an isometry multiplied by a constant.

Example 2.6. There exists non-linear map which it is preserving orthogonality. We define $T: R^2 \longrightarrow R^2$ by T(x,y) = (x,y) if $x,y \neq 0$, T(x,y) = (1,1) if $y = 0, x \neq 0$, T(x,y) = (-1,1) if $x = 0, y \neq 0$ and T(0,0) = (0,0).

3. ϵ -Preserves approximation

In this section we shall obtain characterization of ϵ -Preserves approximation maps. Let X be a normed linear space $\epsilon > 0$ and $x, y \in X$. We call x is ϵ -orthogonal to y and is denoted by $x \perp_{\epsilon} y$ if and only if $||x|| \leq ||x + \alpha y|| + \epsilon$ for all scalar α . If G_1 and G_2 are subsets of X, we define $G_1 \perp_{\epsilon} G_2$ if and only if for all $g_1 \in G_1$ and $g_2 \in G_2$ we have, $g_1 \perp_{\epsilon} g_2$.

For $\epsilon > 0$ we have,

$$\widehat{G}_{\epsilon} = \{ x \in X : x \perp_{\epsilon} G \}.$$

For $\epsilon > 0$, a point $g_0 \in G$ is said to be a ϵ -approximation for $x \in X$ if $x - g_0 \in \widehat{G}_{\epsilon}$. The set of all ϵ -approximation for $x \in X$ be denoted by $P_{G,\epsilon}(x)$. Also we have

$$P_{G,\epsilon}(x) = \{g_0 \in G : ||x - g_0|| \le ||x - g|| + \epsilon \text{ for all } g \in G\}.$$

For all $\epsilon > 0$, it is clear that the set $P_{G,\epsilon}(x)$ is a nonempty set. for more information see [6] and [11].

Definition 3.1. Suppose X, Y are two linear normed spaces and $\epsilon > 0$. A map $T: X \to Y$ is called ϵ -preserving approximation if and only if for all subspace G of X and all $x \in X$,

$$T(P_{G,\epsilon}(x)) = P_{T(G),\epsilon}(T(x)).$$

Corollary 3.2. Let X be a normed linear space and $\epsilon > 0$. Then every isometry operator $T: X \to X$ be ϵ -preserving approximation.

Theorem 3.3. Suppose X, Y are two linear normed spaces, $\epsilon > 0$ and $T: X \to Y$ is an onto which is ϵ -preserves approximation.

- c) If T is linear, then $\forall x, y \in X \ x \perp_{\epsilon} y \Longrightarrow T(x) \perp_{\epsilon} T(y)$.
- **d)** For a subspace G of X, $T(\widehat{G}_{\epsilon}) = T(\widehat{G})_{\epsilon}$.

References

- [1] A. Koldobsky, Operators preserving orthogonality are isometries, Submitted
- [2] G. Brikhoff, Orthogonality in linear metric space, Duke Math. J. 1(1935) 169-172.
- [3] C. Franchetti, M. Furi, Some characteristic properties of real Hilbert spaces, Rwy Romaine Math., 1972.
- [4] F. Mazaheri, F. M. Maalek Ghaini, Quasi-orthogonality of the best approximant sets, Nonlinear Analysis, 65(2006), no. 3, 534-537.
- [5] H. Mazaheri, S. M. Modarress, Some results concerning proximinality and Coproximinality, Nonlinear Analysis, 62(2005) no. 6, 1123-1126.
- [6] H. Mazaheri, S. M. Vaezpour, Orthogonality and ϵ -Orthogonality in Banach spaces, Aust. J. Math. Anal. Appl., 2 (2005) no. 1, Art. 10, 1-5.
- [7] T. D. Narang, Best coapproximation in metric spaces, Publ. Inst. math. (Beograd) (N.S) 51(65)(1992) 71-76.

- [8] P. L. Papini, I. Singer, Best coapproximation in normed linear spaces, Mh. Math., 88(1979) 27-44.
- [9] G. S. Rao, K. R. Chandrasekaran, Best coapproximation in normed linear spaces with property (Λ) , Math. Today, 2(1984) 33-40.
- [10] G. S. Rao, K. R. Chandrasekaran, Some properties of the maps R_G and R_G , Pure Appl. Math. Sci., 23(1986) 21-27.
- [11] G. S. Rao, K. R. Chandrasekaran, Characterization of elements of best coapproximation in normed linear spaces, Pure Appl. Math. Sci., 26(1987) 139-147.
- [12] G. S. Rao, R. Saravanan, Some results concerning best uniform coapproximation., Journal of Inequal. in pure and Appl. Math., 3(2002) no. 2, 1-13.
- [13] G. S. Rao, R. Saravanan, Strongly unique best coapproximation, Kyungpook math. J., 43(2003) no. 4, 519-538.
- [14] I. Singer, Best approximation in normal linear spaces by elements of linear subspaces, Springer, New York 1970.

Received: July 6, 2006