The Maps Preserving Approximation

H. Mazaheri and M. Hossein Zadeh

Department of Mathematics
Yazd University, Yazd, Iran
hmazaheri@yazduni.ac.ir

Abstract

The purpose of this paper is to introduce and discuss the concept of the maps which preserve approximation. We show that if an operator on a normed space is an isometry then preserves all approximation property, every linear operator preserving approximation is an isometry multiplied by a constant.

Mathematics Subject Classification: 41A65, 46B50, 46B20, 41A50

Keywords: Approximation, Preserve approximation, Orthogonal subspace, Chebyshev subspaces, Proximinal space

1. Introduction

Suppose X is a normed linear space and $x, y \in X$, x is said to be orthogonal to y and is denoted by $x \perp y$ if and only if $\|x\| \leq \|x + \alpha y\|$ for all scalar α. If G_1 and G_2 are subsets of X, it is defined $G_1 \perp G_2$ if and only if for all $g_1 \in G_1, g_2 \in G_2, g_1 \perp g_2$. (see [1]). Let G be a subspace of X, it is defined the set of the metric complemented

$\hat{G} = \{ x \in X : x \perp G \} = \{ x \in X : \|x\| = \|x + G\|$,

and the set of the cometric complement

$\tilde{G} = \{ x \in X : G \perp x \}$.

We know that a point $g_0 \in G$ is said to be a best approximation (resp. best coapproximation) for $x \in X$ if and only if $\|x - g_0\| = \|x + G\| = \text{dist}(x, G)$ (resp. $\|g_0 - g\| \leq \|x - g\| \ \forall \ g \in G$). It can be easily proved that g_0 is a best approximation (resp. best coapproximation) for $x \in X$ if and only if $x - g_0 \in \hat{G}$ (resp. $x - g_0 \in \tilde{G}$). The set of all best approximations (resp.
best coapproximations) of \(x \in X \) in \(G \) is shown by \(P_G(x) \) (resp. \(R_G(x) \)). In other words,

\[
P_G(x) = \{ g_0 \in G : x - g_0 \in \hat{G} \}
\]

and

\[
R_G(x) = \{ g_0 \in G : x - g_0 \in \tilde{G} \}.
\]

If \(P_G(x) \) (resp. \(R_G(x) \)) is non-empty for every \(x \in X \), then \(G \) is called an Proximinal (resp. coproximinal) set. The set \(M \) is Chebyshev (resp. cochebyshev) if \(P_G(x) \) (resp. \(R_G(x) \)) is a singleton set for every \(x \in X \). (see [5-13])

A proximal subspace \(G \) is called quasi-Chebyshev if and only if \(P_G(x) \) is compact, for all \(x \in X \) (see [3-4]).

Suppose \(G \) is a subspace of \(X \) then \(G \) is called orthogonal complemented subspace, if either \(G \) is Chebyshev and \(\hat{G} \) is a subspace of \(X \) or \(G \) is cochebyshev and \(\tilde{G} \) is a subspace of \(X \).

2. Preserves approximation

In this section we shall obtain characterization of preserving approximation maps.

Lemma 2.1. Let \(X \) be a normed linear space. If \(T : X \rightarrow X \) is an isometry operator, then for all subspace \(G \) of \(X \) and all \(x \in X \),

\[
T(P_G(x)) = P_{T(G)}(T(x)) \text{ and } T(R_G(x)) = R_{T(G)}(T(x)).
\]

Proof. We have for all \(x \in X \), \(\|T(x)\| = \|x\| \), therefore for all \(x \in X \) and all subspace \(G \) of \(X \) and \(g, g_0 \in G \),

\[
\|x - g_0\| \leq \|x - g\| \Leftrightarrow \|T(x) - T(g_0)\| \leq \|T(x) - T(g)\|. \quad \blacksquare
\]

Definition 2.2. Suppose \(X, Y \) are two linear normed spaces. A map \(T : X \rightarrow Y \) is called preserving approximation (resp. preserving coapproximation) if and only if for all subspace \(G \) of \(X \) and all \(x \in X \),

\[
T(P_G(x)) = P_{T(G)}(T(x)) \text{ (resp. } T(R_G(x)) = R_{T(G)}(T(x)).
\]

Corollary 2.3. Let \(X \) be a normed linear space. Every isometry operator \(T : X \rightarrow X \) is preserving approximation (resp. preserving coapproximation).

Theorem 2.4. Suppose \(X, Y \) are two linear normed spaces and \(T : X \rightarrow Y \) is a linear map which is preserves approximation (resp. preserves coapproximation).

a) Suppose \(G \) is a subspace of \(X \), then \(G \) is proximinal (resp. coproximinal) of \(X \), if and only if \(T(G) \) is proximinal (resp. coproximinal) of \(Y \).
b) Suppose G is a subspace of X, then G is Chebyshev (resp. cochebyshev) if and only if $T(G)$ is Chebyshev (resp. cochebyshev).

c) If T is linear, then $\forall x, y \in X, x \perp y \implies T(x) \perp T(y)$. ($T$ is called preserving orthogonality).

d) For a subspace G of X, $T(G) = \tilde{T}(G)$ (resp. $T(\tilde{G}) = \tilde{T}(G)$).

e) Suppose G is a subspace of X, then G is orthogonality complemented in X if and only if $T(G)$ is orthogonality complemented in Y.

f) Suppose G is a subspace of X, if T is a continuous and onto preserves approximation map, then G is quasi chebyshev if and only if $T(G)$ is quasi Chebyshev.

Proof. We can easily prove (a), (b), (d), (e). We prove the parts (c) and (f).

c) Suppose T is a preserves approximation, if $x, y \in X$ and $x \perp y$, then $0 \in P_{<y>}(x)$. Therefore $0 = T(0) \in P_{T(<y>)}(T(x))$, since T is linear, $T(<y>) = T(y)$. Hence $T(x) \perp T(y)$

Now suppose T is a preserves approximation, if $x, y \in X$ and $x \perp y$, then $0 \in R_{<y>}(y)$. Therefore $0 = T(0) \in R_{T(<x>)}(T(y))$, since T is linear, $T(<x>) = T(x)$.

f) Let $z \in Y$ and $\{u_n\} \subseteq P_{T(G)}(z)$. Since T is onto, we have $z = T(x)$ for some $x \in X$, therefore $\{u_n\} \subseteq T(P_G(x))$. Then there exists a sequence $\{v_n\} \subseteq P_G(x)$ such that $u_n = T(v_n)$. Since G is quasi Chebyshev, the set $P_G(x)$ is compact. Hence there exists subsequence $\{v_{n_k}\}_{k \geq 1}$ of $\{v_n\}$ and $v_0 \in X$ such that $v_{nk} \to v_0$. Since T is continuous, $u_{nk} = T(v_{nk}) \to u_0 = T(v_0)$. Therefore $P_{T(G)}(z)$ is compact.

Theorem 2.5. Let X be a normed linear space and the operator $T : X \to X$ be preserving approximation, then $T = kU$ such that $k \in R$ and U is an isometry.

Proof. We know that T is preserving approximation, from Theorem 2.4, T is preserving orthogonality. From [1], T is an isometry multiplied by a constant.

Example 2.6. There exists non-linear map which it is preserving orthogonality. We define $T : R^2 \to R^2$ by $T(x, y) = (x, y)$ if $x, y \neq 0$, $T(x, y) = (1, 1)$ if $y = 0, x \neq 0$, $T(x, y) = (-1, 1)$ if $x = 0, y \neq 0$ and $T(0, 0) = (0, 0)$.

3. ϵ-Preserves approximation

In this section we shall obtain characterization of ϵ-Preserves approximation maps. Let X be a normed linear space $\epsilon > 0$ and $x, y \in X$. We call x is ϵ-orthogonal to y and is denoted by $x \perp_{\epsilon} y$ if and only if $||x|| \leq ||x + \alpha y|| + \epsilon$ for all scalar α. If G_1 and G_2 are subsets of X, we define $G_1 \perp_{\epsilon} G_2$ if and only if for all $g_1 \in G_1$ and $g_2 \in G_2$ we have, $g_1 \perp_{\epsilon} g_2$.
For $\epsilon > 0$ we have,
\[\hat{G}_\epsilon = \{ x \in X : x \perp \epsilon G \} . \]

For $\epsilon > 0$, a point $g_0 \in G$ is said to be a ϵ-approximation for $x \in X$ if $x - g_0 \in \hat{G}_\epsilon$. The set of all ϵ-approximation for $x \in X$ be denoted by $P_G,\epsilon(x)$. Also we have
\[P_G,\epsilon(x) = \{ g_0 \in G : \| x - g_0 \| \leq \| x - g \| + \epsilon \text{ for all } g \in G \} . \]

For all $\epsilon > 0$, it is clear that the set $P_G,\epsilon(x)$ is a nonempty set. for more information see [6] and [11].

Definition 3.1. Suppose X,Y are two linear normed spaces and $\epsilon > 0$. A map $T : X \rightarrow Y$ is called ϵ-preserving approximation if and only if for all subspace G of X and all $x \in X$,
\[T(P_G,\epsilon(x)) = P_{T(G),\epsilon}(T(x)) . \]

Corollary 3.2. Let X be a normed linear space and $\epsilon > 0$. Then every isometry operator $T : X \rightarrow X$ be ϵ-preserving approximation.

Theorem 3.3. Suppose X,Y are two linear normed spaces, $\epsilon > 0$ and $T : X \rightarrow Y$ is an onto which is ϵ-preserves approximation.

c) If T is linear, then $\forall x, y \in X \ x \perp \epsilon y \implies T(x) \perp \epsilon T(y)$.

d) For a subspace G of X, $T(\hat{G}_\epsilon) = \hat{T(G)_\epsilon}$.

References

Received: July 6, 2006