B-Binomial Convolution and Associated Arithmetical Functions and Their Properties

Selin INAG and Hasan SENAY

Secondary Mathematics Teaching Program Graduate School of Natural and Applied Sciences Education Faculty, Selcuk University, Konya, Turkey inag_s@hotmail.com, hsenay@selcuk.edu.tr

Abstract. In this paper we considered Apostol's article [2] and we defined for B-Binomial convolution associated arithmetical function S. We show that this function and B-Binomial convolution associated with Ramanujan Sums are connected.

Keywords: Arithmetic functions, Convolution, Binomial convolution, Ramanujan Sum

1. Introduction

Let n and d's standart forms are $n=\prod_k p_k^{n_k}$ and $d=\prod_k p_k^{d_k}$ respectively. We know that d|n if and only if $d_k\leq n_k$ [6]. Let $\binom{n_k}{d_k}$ be classical Binomial coefficent. For positive integer n and d is a divisor of n, the function B(n,d) is defined by,

$$B(n,d) = \prod_{k} \binom{n_k}{d_k} = \left\{ \begin{array}{l} 1, \\ 0, \end{array} \right. \qquad if \quad d_k = n_k \ \lor \ d_k = 0$$

For each positive integer n_k , we choose a nonempty subset of the set of divisors of n_k , that is $B(n_k) = \{d_k : d_k \leq n_k \land B(n,d) = 1\}$. Let

$$B(n,d) = \prod_{d_k < n_k} \binom{n_k}{d_k} = \left\{ \begin{array}{l} 1, & if \\ 0, & if \end{array} \right. \quad d_k \in B(n_k)$$

With this for arithmetical functions f and g, we define B-Binomial convolution as;

$$b_{(f*_Bg)}(n_k) = \sum_{d_k \le n_k} f(d_k) g\left(\frac{n_k}{d_k}\right) B(n, d).$$

 $b_{(f*_Bg)}(n_k)$ generalize the Dirichlet convolution. In fact, providing $d_k \in B(n_k)$, from equation (1) we directly obtain

$$(f *_B g)(n_k) = \sum_{d_k \in B(n_k)} f(d_k) g\left(\frac{n_k}{d_k}\right).$$

Theorem 1. For fixed n_k , Equation (1) expresses $b_{(f*_Bg)}(n_k)$ as a dirichlet convolution,

$$b_{(f*_Bq)}(n_k) = (a_{B'} * \mu^{-1})(n_k),$$

where

$$a_{B'}(d_k) = f(d_k)g\left(\frac{n_k}{d_k}\right)B(n,d).$$

Proof.

$$(a_{B'} * \mu^{-1})(n_k) = \sum_{d_k \le n_k} a_{B'}(d_k) \mu^{-1} \left(\frac{n_k}{d_k}\right)$$

$$= \sum_{d_k \le n_k} f(d_k) g\left(\frac{n_k}{d_k}\right) B(n, d) \mu^{-1} \left(\frac{n_k}{d_k}\right)$$

$$= \sum_{d_k \le n_k} f(d_k) g\left(\frac{n_k}{d_k}\right) B(n, d)$$

$$= b_{(f*_B g)}(n_k)$$

which proves Theorem 1.

Theorem 2. For fixed n_k , Equation (1) expresses $b_{(f*_B g)}(n_k)$ as a Drichlet convolution

$$b_{(f*_Bq)}(n_k) = (a_{B^"} * g)(n_k),$$

where

$$a_{B''}(d_k) = f(d_k)B(n,d).$$

Proof.

$$(a_{B^{"}} * g)(n_{k}) = \sum_{d_{k} \leq n_{k}} a_{B^{"}}(d_{k})g\left(\frac{n_{k}}{d_{k}}\right)$$

$$= \sum_{d_{k} \leq n_{k}} f(d_{k})B(n,d)g\left(\frac{n_{k}}{d_{k}}\right)$$

$$= \sum_{d_{k} \leq n_{k}} f(d_{k})g\left(\frac{n_{k}}{d_{k}}\right)B(n,d)$$

$$= b_{(f*_{B}g)}(n_{k})$$

which proves Theorem 2.

Definition 1. If k is a nonnegative integer, the function ζ_k is defined by $\zeta_k(n) = n^k$. The function $\zeta = \zeta_0$ is called the zeta function and for all n, $\zeta(n) = 1$ [4]

Definition 2. For $n = \prod_{k} p_k^{a_k}$, Liouville function is defined by $\lambda(1) = 1$ and $\lambda(n) = (-1)^{a_1 + a_2 + ... + a_k}$ [1].

I

Theorem 3. $\zeta^{-1} = \lambda$ where $\zeta(n) = 1$ [2].

The following inversion theorem for B-Binomial convolution is given by Haukkanen and λ Liouville function is served as μ Mobius function in classical inversion theorem [3].

Theorem 4. (Inversion Theorem) For all n;

$$f(n) = \sum_{d|n} B(n, d)g(d)$$

if and only if

$$g(n) = \sum_{d|n} B(n,d) f(d) \lambda\left(\frac{n}{d}\right).$$

[4].

2. RAMANUJAN SUMS FOR B-BINOMIAL CONVOLUTION

Definition 3. For any integers a_k and b_k , let $e(a_k, b_k) = e^{\frac{2\pi i a_k}{b_k}}$ and let n_k be an integer positive, negative or zero and r_k be a positive integer. Then Ramanujan Sum for B-Binomial convolution is defined by,

$$C_B(n_k, r_k) = \sum_{(n_k, r_k)_b = 1} e(n_k x_k, r_k)$$

It should be noted that the sum is taken over all x_k such that $1 \le x_k \le r_k$ and $(x_k, r_k) = 1$, but it could be over any reduced residue system $(Mod \ r_k)$. This is becouse, if $x_k \equiv x_k' \pmod{r_k}$ then $e(n_k x_k, r_k) = e(n_k x_k', r_k)$.

For fixed r_k , and with n_k restricted to the positive integers, we obtain an arithmetical function $C_B(., r_k)$.

On the other hand, for fixed n_k , we obtain an arithmetical function $C_B(n_k, .)$. Classical Ramanujan Sum has following property,

Proposition 5. For all n and r,

$$C(n,r) = \sum_{d|(n,r)} d\mu \left(\frac{r}{d}\right)$$

/5/.

We introduce and prove an analogue property of the classical Ramanujan Sum, called Ramanujan Sum for B-Binomial Convolution in our M.s. Thesis.

Theorem 6. For all n_k and r_k ,

$$C_B(n_k, r_k) = \sum_{\substack{d_k \le (n_k, r_k) \\ d_k \in B(n_k)}} d_k \lambda_B \left(\frac{n_k}{d_k}\right)$$

[4].

In Theorem 6 when $r_k=0$, we obtain Euler's function related to Ramanujan Sum. Indeed

$$C_B(n_k, r_k) = \sum_{\substack{d_k \le (n_k, r_k) \\ d_k \in B(n_k)}} d_k \lambda_B \left(\frac{n_k}{d_k}\right)$$

$$C_B(n_k, r_k) = \sum_{\substack{d_k \le (n_k, 0) \\ d_k \in B(n_k)}} d_k \lambda_B \left(\frac{n_k}{d_k}\right)$$

$$C_B(n_k, r_k) = \sum_{\substack{d_k \le n_k \\ d_k \in B(n_k)}} d_k \lambda_B \left(\frac{n_k}{d_k}\right)$$

$$C_B(n_k, 0) = \varphi_B(n_k).$$

In the following theorem we prove some basic properties of Ramanujan Sum for B-Binomial convolution.

Definition 4. Let h and g be multiplicative arithmetical functions and consider the sum.

$$s_{(f*_Bg)}(n_k, r_k) = \sum_{\substack{d_k \le (n_k, r_k) \\ d_k \in B(n_k)}} B(n, d)h(d_k)g\left(\frac{n_k}{d_k}\right)\lambda_B\left(\frac{n_k}{d_k}\right)$$

where n_k is an integer and r_k is a positive integer. For B-Binomial convolution associated arithmetical function S is defined by

$$S(n_k) = s_{(f*p,q)}(n_k, 0)$$
 for all n_k .

Theorem 7. Let $h = \zeta_1$ and $g = \zeta_0$. Then

$$s_{(f*_Bg)}(n_k, r_k) = C_B(n_k, r_k), \qquad S(n_k) = \varphi_B(n_k).$$

Proof. For $h = \zeta_1 = d_k$ and $g = \zeta_0 = 1$

$$s_{(f*_Bg)}(n_k, r_k) = \sum_{\substack{d_k \le (n_k, r_k) \\ d_k \in B(n_k)}} B(n, d)h(d_k)g\left(\frac{n_k}{d_k}\right)\lambda_B\left(\frac{n_k}{d_k}\right)$$

$$= \sum_{\substack{d_k \le (n_k, r_k) \\ d_k \in B(n_k)}} 1.d_{k.}1.\lambda_B \left(\frac{n_k}{d_k}\right)$$

$$=C_B(n_k,r_k).$$

Now again for $h = \zeta_1 = d_k$ and $g = \zeta_0 = 1$ and $r_k = 0$; we clearly obtain $(n_k, r_k) = (n_k, 0) = n_k$.

$$S(n_k) = s_{(f*_B g)}(n_k, r_k) = \sum_{\substack{d_k \le (n_k, r_k) \\ d_k \in B(n_k)}} B(n, d)h(d_k)g\left(\frac{n_k}{d_k}\right)\lambda_B\left(\frac{n_k}{d_k}\right)$$

$$= \sum_{\substack{d_k \le (n_k, 0) \\ d_k \in B(n_k)}} B(n, d)h(d_k)g\left(\frac{n_k}{d_k}\right)\lambda_B\left(\frac{n_k}{d_k}\right)$$

$$= \sum_{\substack{d_k \le n_k \\ d_k \in B(n_k)}} d_k\lambda_B\left(\frac{n_k}{d_k}\right)$$

$$S(n_k) = \varphi_B(n_k)$$

which proves theorem 6. Here, we obtain at the same time as a bonus $S(n_k) = s_{(f*_B g)}(n_k, 0) = C_B(n_k, 0) = \varphi_B(n_k)$.

References

- [1] Apostol, T., Introduction to Analytic Number Theory, 1976, Springer-Verlag New York Berlin Heidelberg New York.
- [2] Apostol, T., Arithmetical properties of generalized Ramanujan Sums, 1972, Pacific Journal of Mathematics Vol. 41,No;2.
- [3] Haukkanen, P., On a binomial convolution of arithmetical function, 1996, Vierde Serie Deel 14 No.2 Juli, 209-216.
- [4] Inag, S., Binomial konvulusyonu ve ilgili Ramanujan Toplami , Yuksek Lisans tezi, S.U. Fen Bilimleri Enstitusu, 2004,Konya.
- [5] Mc.Carthy, P.J., Introduction to Arithmetical Functions, 1986, Springer-Verlag New York Berlin Heidelberg Tokyo.
- [6] Senay, H., Sayilar Teorisine Giris, 1989, Konya.

Received: July 1, 2006