\(\Gamma - (\sigma, \tau) \) Derivation on Gamma Near Rings

Mustafa AŞCI

Gazi University, Science and Art Faculty
Department of Mathematics
Ankara, Turkey
masci@gazi.edu.tr

Abstract. In this paper \(\Gamma - (\sigma, \tau) \) Derivation of Gamma Near Rings is defined. Some results are given about this derivation.

Mathematics Subject Classification: Primary 16Y30, 16W25; Secondary 16U80

Keywords: Near Rings, Gamma Near Rings, \(\Gamma - (\sigma, \tau) \) Derivation

1. INTRODUCTION

All near-rings considered in this paper are left distributive. \(\Gamma - \) near ring is a triple \((M, +, \Gamma)\) where

(i) \((M, +)\) is a group (Not necessarily Abelian)

(ii) \(\Gamma\) is a non-empty set of binary operators \((M, +, \gamma)\) is near ring for each \(\gamma \in \Gamma\)

(iii) \((x \beta y) \gamma z = x \beta (y \gamma z), \forall x, y, z \in M, \beta, \gamma \in \Gamma\)

For a \(\Gamma - \)near ring \(M\) the set

\[M_0 = \{ x \in M : 0 \gamma x = 0, \forall \gamma \in \Gamma \} \]

is called the zero-symmetric part of \(M\). If \(M = M_0\) then \(M\) is called zero symmetric. For \(\forall x \in M, u \in U, \gamma \in \Gamma\) if \(x \gamma u \in U\) then \(M\) is said to be left invariant. For \(\forall x \in M, u \in U, \gamma \in \Gamma\) if \(u \gamma x \in U\) then \(M\) is said to be right invariant. If \(U\) is both left and right invariant, we say that \(U\) is invariant.

For \(x \in M\) if \(x \Gamma M \Gamma y = \{0\} \) implies \(x = 0\) or \(y = 0\) then \(M\) is called prime \(\Gamma - \)near ring. If \(M\) and \(M'\) are \(\Gamma - \)near rings then a mapping \(d\), such that \(d : M \rightarrow M'\)

\[d(x + y) = d(x) + d(y) \text{ and } d(x \gamma y) = d(x) \gamma d(y) \]

is called \(\Gamma - \)near ring homomorphism.
Lemma 3. Let \(\forall x, y \in M \) then for \(x + y - x - y \) we get \(x = y \) and \(y = x \). We can be commuted with \(x, y \) and \(y, x \) will be a zero-symmetric \(x, y \). The symbol \(C \) will denote the multiplicative center of \(M \).

\[
\begin{align*}
C_{(\sigma, \tau)} &= \{ x \in M : x\gamma\sigma(m) = \tau(m)\gamma x \quad \forall m \in M, \gamma \in \Gamma \} \\
\end{align*}
\]

\(\forall x, y \in M, [x, y]_{(\sigma, \tau)} = x\gamma\sigma(y) - \tau(y)\gamma x \) is defined as commutator. \((x, y) = x + y - x - y \) will denote the additive-group commutator. Other commutators are like this.

\[
\begin{align*}
[x, y]_{(\sigma, \tau)} &= x\sigma(y) - \tau(y)x \\
[x, y]_{\gamma} &= x\gamma y - y\gamma x \\
[x\gamma y, z]_{(\sigma, \tau)} &= x\gamma [y, z]_{(\sigma, \tau)} + [x, \tau(z)]_{\gamma} \gamma y \\
\end{align*}
\]

2. Main Results

Lemma 1. For \(\forall x, y \in M, \gamma, \beta \in \Gamma \) if \(z \in C \) then \([z\beta x, y]_{(\sigma, \tau)} = z\beta [x, y]_{(\sigma, \tau)} \)

Lemma 2. ([5], Lemma 2) Let \(M \) be a prime \(\Gamma \)-near ring.

(i) If \(z \in C/\{0\} \) then \(z \) is not a zero divisor.

(ii) Let \(z \in C/\{0\} \), be an element such that \(z + z \in C \) Then \((M, +) \) is Abelian.

(iii) If \(z \in C/\{0\} \) and \(x \) is an element of \(M \) such that \(x\gamma z \in C \) or \(z\gamma x \in C \) then \(x \in C \)

Lemma 3. Let \(M \) be a \(\Gamma \)-near ring and \(d \) be a \(\Gamma - (\sigma, \tau) \) derivation on \(M \). Then for \(\forall x, y, z \in M, \gamma, \mu \in \Gamma \) the followings are satisfied.

(i) \((x\gamma d(y) + d(x)\gamma y)\mu z = x\gamma d(y)\mu z + d(x)\gamma y\mu z \)

(ii) \((d(x)\gamma y + x\gamma d(y))\mu z = d(x)\gamma y\mu z + x\gamma d(y)\mu z \)

Lemma 4. Let \(M \) be 2-torsion-free prime and \(d, \Gamma - (\sigma, \tau) \) derivation and \(d \), can be commuted with \(\sigma \) and \(\tau \). If \(d^2 = 0 \) then \(d = 0 \)

Proof. Let \(\forall x, y \in M, \gamma \in \Gamma \). From the hypothesis

\[
\begin{align*}
0 &= d^2(x\gamma y) = d(d(x)\gamma\sigma(y) + \tau(x)\gamma d(y)) \\
&= d^2(x)\gamma\sigma^2(y) + \tau(d(x))\gamma d(\sigma(y)) + d(\tau(x))\gamma\sigma(d(y)) + \tau^2(x)\gamma d^2(y) \\
\end{align*}
\]

We get

\[
\begin{align*}
0 &= \tau(d(x))\gamma d(\sigma(y)) + d(\tau(x))\gamma\sigma(d(y)) \\
&= 2\tau(d(x))\gamma\sigma(d(y)) \\
&= \tau(d(x))\gamma\sigma(d(y)) \\
\end{align*}
\]

Taking \(y\beta z \) instead of \(y \)
\[0 = \tau(d(x))\gamma \sigma(d(y\beta z)) = \tau(d(x))\gamma \sigma(d(y)\beta \sigma(z) + \tau(y)\beta d(z)) = \tau(d(x))\gamma \sigma(d(y)\beta \sigma(z)) + \tau(d(x))\gamma \sigma(\tau(y)\beta d(z)) = \tau(d(x))\gamma \sigma(\tau(y)\beta \sigma(d(z))) = \tau(d(x))\Gamma M \Gamma \sigma(d(z)) \]

Since \(M \) is prime then \(d(x) = 0 \) or \(d(z) = 0 \) and as a result we get \(d = 0 \). ▪

Lemma 5. Let \(d \) be a \(\Gamma - (\sigma, \tau) \) derivation on \(M \). Suppose that \(u \in M \) is not a left zero divisor. If

\[[u, d(u)]_{(\sigma, \tau)}^\gamma = 0 \]

for all \(\gamma \in \Gamma \) then \((x, u) \) is a constant on \(M \) for all \(x \in M \).

Proof. Let \(x \in M, \gamma \in \Gamma \). Then

\[d(u\gamma(u + x)) = d(u)\gamma \sigma(u + x) + \tau(u)\gamma d(u + x) = d(u)\gamma \sigma(u) + d(u)\gamma \sigma(x) + \tau(u)\gamma d(u) + \tau(u)\gamma d(x) \]

and

\[d(u\gamma u + u\gamma x) = d(u\gamma u) + d(u\gamma x) = d(u)\gamma \sigma(u) + \tau(u)\gamma d(u) + d(u)\gamma \sigma(x) + \tau(u)\gamma d(x) \]

Since the left sides are equal the right sides must be equal

\[0 = \tau(u)\gamma d(u) + \tau(u)\gamma d(x) - \tau(u)\gamma d(u) - \tau(u)\gamma d(x) \]

\[= \tau(u)\gamma d((x, u)) \]

Since \(u \) is not a left zero divisor we have that \(d((x, u)) = 0 \) and \((x, u) \) is constant. ▪

Theorem 6. Let \(d \) be a nontrivial \(\Gamma - (\sigma, \tau) \) derivation on \(M \) and let \(M \) have no nonzero divisor of zero. If for \(x \in M, \gamma \in \Gamma \)

\[[x, d(x)]_{(\sigma, \tau)}^\gamma = 0 \]

then \((M, +) \) is Abelian.

Proof. For \(a, b \in M \) Let \(c = (a, b) \) be any additive commutator. Then \(c \) is a constant from lemma 5. That is \(d(c) = 0 \) Since \(w\gamma c = (w\gamma a, w\gamma c) \) where \(w \in M \) and \(\gamma \in \Gamma \) then \(w\gamma c \) is constant. Then we get

\[0 = d(w\gamma c) = d(w)\gamma \sigma(c) + \tau(w)\gamma d(c) = d(w)\gamma \sigma(c) \]

Since \(d(w) \neq 0 \) and \(M \) have no zero divisor we get \(c = 0 \). So \((M, +) \) is Abelian. ▪
Theorem 7. Let M be prime and let d be a nontrivial $\Gamma - (\sigma, \tau)$ derivation on M. If $d(x) \in C$ then $(M, +)$ is Abelian. Furthermore if M is 2-torsion-free then M is commutative.

Proof. Let c be an arbitrary constant and x be a nonconstant. Then we get
\[
d(x\gamma c) = d(x)\gamma \sigma(c) + \tau(x)\gamma d(c) = d(x)\gamma \sigma(c) \in C
\]
Since $d(x) \in C/\{0\}$ and from lemma 2(iii) we get $c \in C/\{0\}$. Since $d(c+c) = 0$ from lemma 2(ii) we get $(M, +)$ is Abelian. Let 0 be the only constant. Let u be not a zero divisor. For $x \in M, \gamma \in \Gamma$ we get
\[
d(u\gamma(u + x)) = d(u)\gamma \sigma(u + x) + \tau(u)\gamma d(u + x) = d(u)\gamma \sigma(u) + d(u)\gamma \sigma(x) + \tau(u)\gamma d(u) + \tau(u)\gamma d(x)
\]
and then
\[
d(u\gamma u + u\gamma x) = d(u\gamma u) + d(u\gamma x) = d(u)\gamma \sigma(u) + \tau(u)\gamma d(u) + d(u)\gamma \sigma(x) + \tau(u)\gamma d(x)
\]
From the hypothesis and $d(x) \in C$ we obtain
\[
0 = \tau(u)\gamma(d(x) + d(u) - d(x) - d(u)) = u\gamma(d(x + u - x - u) = u\gamma d((x, u))
\]
Since u is not a zero divisor we get $d((x, u)) = 0$. Then $(x, u) = 0$. That is if $u \in C(M)$ then it is on the center of $(M, +)$.

Now let x be a nonzero element. Since $d(M) \subseteq C$ and from lemma 2(i) $d(x)$ is not a zero divisor. From this $d(x) \in C(M)$. Let $0 \neq y \in M$ then
\[
0 = d(x) + d(y) - d(x) - d(y) = d((x, y))
\]
Since $(x, y) = 0$ then $(M, +)$ is Abelian. Taking $x\beta y$ instead of x in the hypothesis where $\beta \in \Gamma$ we obtain
\[
0 = [d(x\beta y), z]_{(\sigma, \tau)} = [d(x)\beta \sigma(y) + \tau(x)\beta d(y), z]_{(\sigma, \tau)} = [d(x)\beta \sigma(y), z]_{(\sigma, \tau)} + [\tau(x)\beta d(y), z]_{(\sigma, \tau)}
\]
Using commutator properties from lemma 1(i) for $\forall x, y, z \in M, \beta, \gamma \in \Gamma$ we get
\[
d(x)\beta [y, z]_{(\sigma, \tau)} = d(y)\beta [z, x]_{(\sigma, \tau)}
\]
Taking $d(x)$ instead of x in this equality and using the hypothesis we obtain
\[
0 = d^2(x)\beta [y, z]_{(\sigma, \tau)}
\]
Let us suppose that M is not commutative. Choosing $y, z \in M$ such that $[y, z]_{(\sigma, \tau)} \neq 0$. Since a central element $d^2(x)$ can not be a nonzero divisor of...
zero we obtain that \(d^2(x) = 0 \) for all \(x \in M \). Then from lemma 4 \(d = 0 \) is obtained. But this is a contradiction. That is \(M \) is commutative. ■

Lemma 8. Let \(M \) be prime and \(x, y \in M \). If \(x \in C \) and \(x\Gamma y = \{0\} \) then \(x = 0 \) or \(y = 0 \).

Proof. Obvious. ■

Theorem 9. Let \(M \) be prime and let \(d \) be a nontrivial \(\Gamma - (\sigma, \tau) \) derivation on \(M \). If \([d(x), d(y)]_{(\sigma, \tau)} = 0 \) then \((M, +) \) is Abelian.

Proof. Since \([d(x), d(y)]_{(\sigma, \tau)} = 0 \) for all \(x, y \in M \) and \(\gamma \in \Gamma \). If both \(w \) and \(w + w \) commute elementwise with \(d(x) \)

\[
0 = [w, d(x + y)]_{(\sigma, \tau)} = w\gamma(d(x, y))
\]

is obtained. Taking \(d(z) \) instead of \(w \) in the last equation we have

\[
0 = d(z)\gamma d(x + y)
\]

for \(\forall x, y, z \in M, \gamma \in \Gamma \).

Substituting \(z\beta v \) for \(z \) in last equation and using lemma 3(i) we obtain

\[
0 = [d(z\beta v), d((x, y))]_{(\sigma, \tau)} = d(z)\beta\sigma(v)\gamma d((x, y)) + \tau(x)\beta d(v)\gamma d(x, y))
\]

By primeness of \(M \) we get \(d((x, y)) = 0 \).

Since \(z\gamma(x, y) \) is also an additive commutator for any \(z \in M \) and \(\gamma \in \Gamma \) we get

\[
0 = d(z\gamma(x, y))
\]

\[
= d(z)\gamma\sigma(x, y) + \tau(z)\gamma d((x, y))
\]

\[
= d(z)\gamma\sigma(x, y)
\]

By primeness of \(M \) we get \((x, y) = 0 \). This means \((M, +) \) is Abelian. ■

Lemma 10. Let \(M \) be prime and \(U \neq \{0\} \) be a left (resp. right) invariant subset of \(M \). If \(U \subseteq C \) then \(M \) is commutative.

Proof. Since a central left invariant subset of \(M \) is a right invariant subset of \(M \), we may assume that \(U \neq \{0\} \) is a right invariant subset of \(M \). Let \(x \in M, u \in U, \gamma \in \Gamma \). From the hypothesis we get that \([u, x]_{(\sigma, \tau)} = 0 \). Replacing \(u \) by \(u\beta y \) in the previous equation, we obtain

\[
0 = [u\beta y, x]_{(\sigma, \tau)} = u\beta [y, x]_{(\sigma, \tau)}
\]

Thus since \(U \neq \{0\} \) we have \([y, x]_{(\sigma, \tau)} = 0 \) from lemma 6. This completes the proof. ■

Theorem 11. Let \(M \) be prime and \(2 \)-torsion-free and \(U \neq \{0\} \) be left (resp. right) invariant subset of \(M \) and \(d \) be a \(\Gamma - (\sigma, \tau) \) derivation on \(M \). If \(d(U) \subseteq C \setminus \{0\} \) then \(M \) is commutative.
Proof. Let $x \in M, u \in U, \gamma \in \Gamma$. From the hypothesis $[d(u), x]_{(\sigma, \tau)}^\gamma = 0$. Taking $u\beta u$ instead of u in the previous equation, we have

$$2 [d(u)\beta u, x]_{(\sigma, \tau)}^\gamma$$

Since M is prime 2- torsion free , for $x \in M, u \in U, \gamma \in \Gamma$ we obtain

$$[d(u)\beta u, x]_{(\sigma, \tau)}^\gamma = 0$$

From lemma 2(i) we get

$$d(u)\beta [u, x]_{(\sigma, \tau)}^\gamma = 0$$

From hypothesis, last equation and lemma 6 for $x \in M, u \in U, \gamma \in \Gamma$ we get

$$[u, x]_{(\sigma, \tau)}^\gamma = 0$$

As a result from lemma 7 M is commutative.

References

Received: May 14, 2006