On the instability of positive solution of an elliptic equation

G. A. Afrouzi and S. H. Rasouli

Department of Mathematics, Faculty of Basic Sciences
Mazandaran University, Babolsar, Iran
afrouzi@umz.ac.ir

Abstract

We study the stability of positive stationary solutions of

\[
\begin{align*}
-\Delta u(x) &= \lambda f(x, u), & x &\in \Omega, \\
Bu &= 0, & x &\in \partial \Omega,
\end{align*}
\]

where \(\Omega \) is a bounded domain in \(\mathbb{R}^n \) with smooth boundary \(Bu(x) = \alpha h(x)u + (1 - \alpha) \frac{\partial u}{\partial n} \) where \(\alpha \in [0, 1] \), \(h : \partial \Omega \rightarrow \mathbb{R}^+ \) with \(h = 1 \) when \(\alpha = 1 \), \(\lambda > 0 \) is a constant and \(f \) is a smooth function such that \(f_{uu}(x, u) > 0 \) for all fixed \(x \in \Omega \), \(u \in \mathbb{R}^+ \), \(f_x(0, 0) = 0 \), \(f(x, u) < 0 \) for \(u \in (0, \beta) \) and \(f(x, u) > 0 \) for \(u > \beta \) for some \(\beta > 0 \) (for all fixed \(x \in \Omega \)). We provide a simple proof to establish that every positive stationary solution is linearly unstable.

Keywords: Instability, linearized equation, positive solutions

Mathematics Subject Classification: 35B35, 35J65

1 Introduction

In this paper, we consider the stability of positive stationary solutions to the elliptic boundary value problem

\[
\begin{align*}
-\Delta u(x) &= \lambda f(x, u), & x &\in \Omega, \\
Bu &= 0, & x &\in \partial \Omega,
\end{align*}
\]

where \(\Omega \) is a bounded domain in \(\mathbb{R}^n \) with smooth boundary \(Bu(x) = \alpha h(x)u + (1 - \alpha) \frac{\partial u}{\partial n} \) where \(\alpha \in [0, 1] \), \(h : \partial \Omega \rightarrow \mathbb{R}^+ \) is a smooth function with \(h = 1 \) when \(\alpha = 1 \), i.e., the boundary condition may be of Dirichlet, Neumann or mixed type, \(\lambda > 0 \) is a constant and \(f \) is a smooth function satisfying
\[f_{uu}(x, u) > 0 \text{ for all fixed } x \in \Omega \ (u \in R^+) \text{ and } f_x(0, 0) = 0, \quad (3) \]

and

\[f(x, u) < 0 \text{ for } u \in (0, \beta) \text{ and } f(x, u) > 0 \text{ for } u > \beta \text{ for some } \beta > 0, \quad (4) \]

for all fixed \(x \in \Omega \), where \(f_u(x, u) \) denotes the partial derivative of \(f(x, u) \) with respect to \(u \).

In the case when \(f(x, u) \equiv f(u) \), was studied by several authors. Brown and his co-authors have altogether proved that if \(f'' > 0 \) and \(f(0) \leq 0 \), then every non-trivial nonnegative solution of the problem

\[
\begin{cases}
-\Delta u = \lambda f(u), & x \in \Omega, \\
 u = 0, & x \in \partial\Omega,
\end{cases}
\quad (5)
\]

is unstable. They first considered the monotone case, i.e., \(f' > 0 \) in [2]. The non-monotone case was first proved by Tertikas [4] using sub- and supersolution. For the case \(f(x, u) \equiv m(x) u(u - 1) \), Afrouzi and Rasouli [1] studied the instability of positive solutions. The purpose of this paper is to extend this study to problem (1). The main result of [2] is summarized in the following theorem.

Theorem 1.1. Let \(f : R \rightarrow R \) be a twice continuously differentiable function, then

(i) if \(f'' > 0 \) and \(f(0) \leq 0 \), then every nontrivial nonnegative solution of (5) is unstable. while

(ii) if \(f'' < 0 \) and \(f(0) \geq 0 \), then every nontrivial nonnegative solution of (5) is stable.

We recall that, if \(u \) be any nonnegative solution of

\[
\begin{cases}
-\Delta u = g(x, u), & x \in \Omega, \\
 u = 0, & x \in \partial\Omega,
\end{cases}
\quad (6)
\]

then the linearized equation about \(u \) is

\[
\begin{cases}
-\Delta \phi - g_u(x, u)\phi = \mu \phi, & x \in \Omega, \\
 \phi = 0, & x \in \partial\Omega.
\end{cases}
\quad (7)
\]

Definition 1.3. We call a solution \(u \) of (6) a linearly stable solution if all eigenvalues of (7) are strictly positive, which can be inferred if the principal eigenvalue \(\mu_1 > 0 \). Otherwise \(u \) is linearly unstable.
2 Main result

In this section we shall prove the instability of positive stationary solution u by showing that the principal eigenvalue μ_1, of the equation linearized about u is negative; the stability of u then follows from the well-known principle of linearized stability (see [3]). We overcome the difficulty of f being nonmonotone, by re-writing f as the sum of the monotone function and a linear function involving $f(0,0)$ and $f_u(0,0)$. By doing so we arrive at a much simpler proof clearly indicating the role of $f(0,0)$ in establishing the instability result. Our main result is the following theorem.

Theorem 1.1 : Every positive stationary solution of (1)-(2) is linearly unstable.

Proof. Let $g(x,u) = f(x,u) - f(0,0) + |f_u(0,0)|u$. Then $g(x,0) = 0$ for all fixed $x \in \Omega$, $g_u(x,u) = f_u(x,u) + |f_u(0,0)|$, $g_{uu}(x,u) = f_{uu}(x,u) > 0$ for all fixed $x \in \Omega$ ($u \in R^+$) and, therefore $g_u(x,u) > 0$ for all fixed $x \in \Omega$ ($u \in R^+$) and $g(x,u) > 0$ for all fixed $x \in \Omega$ ($u \in R^+$). Now, (1) – (2) can be rewritten as

\[-\Delta u(x) = \lambda \{g(x,u) + f(0,0) - |f_u(0,0)|u\}, \quad x \in \Omega, \quad (8)\]

\[Bu(x) = 0, \quad x \in \partial\Omega. \quad (9)\]

Let u_0 be any positive stationary solution of (8) – (9). Then the linearized equation about u_0 is

\[-\Delta \phi(x) - \lambda \{g_u(x,u_0) - |f_u(0,0)|\} \phi(x) = \mu \phi(x), \quad x \in \Omega, \quad (10)\]

\[B\phi(x) = 0, \quad x \in \partial\Omega, \quad (11)\]

Let μ_1 be the principal eigenvalue and let $\psi(x) \geq 0$ be a corresponding eigenfunction. Multiplying (8) by $g_u(x,u_0)\psi(x)$ and (10) by $g(x,u_0)$, then subtracting and integrating over Ω, we obtain

\[\int_\Omega \{(-\Delta u_0) g_u(x,u_0) \psi(x) - (-\Delta \psi(x))g(x,u_0) - \lambda f(0,0)g_u(x,u_0)\psi(x) \]

\[+\lambda |f_u(0,0)|u_0\psi(x) - \lambda |f_u(0,0)|g(x,u_0)\psi(x)\}dx \]

\[= -\mu_1 \int_\Omega \psi(x)g(x,u_0)dx. \quad (12)\]
But by Green’s first identity, we have

\[
\int_{\Omega} (-\Delta u_0) g_u(x, u_0) \psi(x) dx = \int_{\Omega} \nabla (g_u(x, u_0) \psi(x)) \nabla u_0(x) dx
\]

\[- \int_{\partial \Omega} g_u(x, u_0) \psi(s)(\frac{\partial u_0}{\partial n}) ds = \int_{\Omega} g_{uu}(x, u_0) \psi(x) |\nabla u_0|^2 dx
\]

\[+ \int_{\Omega} g_u(x, u_0)(\nabla \psi \nabla u_0) dx - \int_{\partial \Omega} g_u(x, u_0) \psi(s) (\frac{\partial u_0}{\partial n}) ds,
\]

(13)

and

\[
\int_{\Omega} (\Delta \psi(x)) g(x, u_0) dx = - \int_{\Omega} \nabla (g(x, u_0)) \nabla \psi(x) dx + \int_{\partial \Omega} g(x, u_0)(\frac{\partial \psi}{\partial n}) ds
\]

\[= - \int_{\Omega} g_u(x, u_0)(\nabla u_0 \nabla \psi) dx + \int_{\partial \Omega} g(x, u_0)(\frac{\partial \psi}{\partial n}) ds.
\]

(14)

By using (13) - (14) in (12) we get

\[- \mu_1 \int_{\Omega} \psi(x) g(x, u_0) dx = \int_{\Omega} g_{uu}(x, u_0) \psi(x) |\nabla u_0|^2 dx
\]

\[- \lambda f(0, 0) \int_{\Omega} g_u(x, u_0) \psi(x) dx + \lambda |f_u(0, 0)| \int_{\Omega} \{g_u(x, u_0) u_0 - g(x, u_0)\} \psi(x) dx
\]

\[+ \int_{\partial \Omega} \{g(x, u_0) (\frac{\partial \psi}{\partial n}) - g_{u}(x, u_0) \psi(s) (\frac{\partial \psi}{\partial n})\} ds.
\]

(15)

We notice that when \(\alpha = 1 \) (then \(h = 1 \)) we have \(u_0 = 0 \) for \(s \in \partial \Omega \) and, therefore, \(g(x, u_0) = 0 \) for \(s \in \partial \Omega \) and also we have \(\psi = 0 \) for \(s \in \partial \Omega \). Hence,

\[
\int_{\partial \Omega} \{g(x, u_0) (\frac{\partial \psi}{\partial n}) - g_u(x, u_0) \psi(s) (\frac{\partial \psi}{\partial n})\} ds = 0,
\]

(16)

and when \(\alpha \neq 1 \), we have

\[
\int_{\partial \Omega} \{g(x, u_0) (\frac{\partial \psi}{\partial n}) - g_u(x, u_0) \psi(s) (\frac{\partial \psi}{\partial n})\} ds
\]

\[= \int_{\partial \Omega} \{g(x, u_0) \frac{(-\alpha h(x) \psi(x))}{(1 - \alpha)} - g_u(x, u_0) \psi(s) \frac{(-\alpha h(x) u_0)}{(1 - \alpha)}\} ds
\]
On the instability of positive solution

\[= \int_{\partial \Omega} \left\{ \frac{\alpha h(x) \psi(s)}{1 - \alpha} \right\} [u_0 g_u(x, u_0) - g(x, u_0)] ds. \]

But \(\alpha \geq 0, \ h > 0, \ \psi \geq 0 \) for \(s \in \partial \Omega \) and \(u_0 g_u(x, u_0) - g(x, u_0) > 0 \) for all fixed \(x \in \Omega \) \((u_0 \in \mathbb{R}^+)\). Therefore, if \(\alpha \neq 1 \)

\[\int_{\partial \Omega} \left\{ \frac{\alpha h(x) \psi(s)}{1 - \alpha} \right\} [u_0 g_u(x, u_0) - g(x, u_0)] ds \geq 0. \tag{17} \]

Also, since \(g_{uu}(x, u_0) > 0 \) for all fixed \(x \in \Omega \) \((u_0 \in \mathbb{R}^+)\), we get

\[\int_\Omega g_{uu}(x, u_0) \psi(x) |\nabla u_0|^2 dx > 0. \tag{18} \]

Thus, by (16) – (18) we have

\[-\mu_1 \int_\Omega \psi(x) g(x, u_0) dx > -\lambda f(0, 0) \int_\Omega g_u(x, u_0) \psi(x) dx \]

\[+ \lambda |f_u(0, 0)| \int_\Omega \{g_u(x, u_0) u_0 - g(x, u_0)\} \psi(x) dx. \tag{19} \]

Now by using (3) – (4) and the fact that \(g_u(x, u_0) u_0 - g(x, u_0) > 0 \) for all fixed \(x \in \Omega \) \((u_0 \in \mathbb{R}^+)\) in (19) it is easy to see that

\[-\mu_1 \int_\Omega \psi(x) g(x, u_0) dx > 0. \]

But \(\psi > 0 \) for \(x \in \Omega \) and \(g(x, u_0) > 0 \) for all fixed \(x \in \Omega \) \((u_0 \in \mathbb{R}^+)\) and hence, \(\mu_1 < 0 \) and the result follows (see [3]). \(\square \)

References

Received: March 1, 2006