A universal property of odd degree
real Fermat curves

E. Ballico 1 and R. Ghiloni 2

Dept. of Mathematics, University of Trento
38050 Povo (TN), Italy
ballico@science.unitn.it, ghiloni@science.unitn.it

Abstract. Fix an odd integer \(d \geq 1 \) and let \(F_d \subset \mathbb{R}^2 \) denote the real Fermat curve defined by the equation \(x^d + y^d = 1 \). Here we prove that \(F_d \) has the following property: Let \(X \subseteq \mathbb{R}^n \) be any real algebraic variety. Then there exists a “one-parameter isotopic Nash modification” \(\tilde{X}_t \) of \(X \) such that \(\tilde{X}_0 = X \) and each real algebraic variety \(\tilde{X}_t, \ t \neq 0 \) may be biregularly embedded into \((F_d)^n\).

Mathematics Subject Classification: 14P05; 14P20
Keywords: Nash variety; real algebraic variety; Nash map

For the standard definitions of real algebraic varieties, regular maps between two real algebraic varieties and Nash maps, see [1]. For all real algebraic varieties \(X, Y \), let \(\mathcal{N}(X, Y) \) denote the set of all Nash maps \(f : X \rightarrow Y \). Here we just recall the following definitions heavily used in [2] and [3] (see [3], Def. 1.6 and 1.7).

Definition 1. Let \(X \) and \(\tilde{X} \) be real algebraic varieties and \(\phi : \tilde{X} \rightarrow X \) a regular map. We will say that \(\phi \) is a weak change of the algebraic structure of \(X \) if it is bijective and \(\phi^{-1} \) is a Nash map.

Definition 2. Let \(X, Z, X^* \) be real algebraic varieties, \(z_0 \in Z \) and \(\pi : X^* \rightarrow Z \) a regular map. A map \(\beta : X^* \rightarrow X \) is called a weak deformation of \(X \) parametrized by \((\pi, z_0)\) if it is regular, \(\pi^{-1}(z_0) \) is biregularly isomorphic to \(X \), while, for each \(z \in Z \setminus \{z_0\} \), the map \(\beta|\pi^{-1}(z) : \pi^{-1}(z) \rightarrow X \) is a weak change of the algebraic structure of \(X \).

Hence a regular map \(\phi : \tilde{X} \rightarrow X \) between real algebraic varieties is a weak change of the algebraic structure of \(X \) if and only if it is a Nash isomorphism. In particular, it must be a homeomorphism for the euclidean topology. Notice that, if \(\phi \) is a weak change of the algebraic structure of \(X \), then \(\phi^{-1} \) maps nonsingular points to nonsingular points. Hence if \(X \) is nonsingular, then \(\tilde{X} \) is nonsingular also.

1The author was partially supported by MIUR and GNSAGA of INdAM (Italy)
2The author was partially supported by MIUR and GNSAGA of INdAM (Italy)
Definition 3. Let M be an affine Nash manifold. We say that a Nash map $F : M \times \mathbb{R} \to M$ is a Nash diffeotopy of M if $F|_M \times \{t\}$ is a Nash isomorphism for all $t \in \mathbb{R}$ and $F|M \times \{0\} : M \times \{0\} \to M$ is just the isomorphic projection. Let \mathcal{U} be a neighborhood of the identity map Id_M in $\mathcal{N}(M, M)$, equipped with the C^∞ compact-open topology. We say that F is in \mathcal{U} if $F|M \times \{t\} \in \mathcal{U}$ for all $t \in \mathbb{R}$.

Following the proof of [3], Th. 1.8, we are able to obtain the following result which surprised us.

Theorem. For each odd integer $d \geq 1$, the real Fermat curve $F_d \subseteq \mathbb{R}^2$ defined by the equation $x^d + y^d = 1$ has the following universal property. Let $X \subseteq \mathbb{R}^n$ be any real algebraic variety. Identify $\mathbb{R}^n \times \mathbb{R}^n$ with \mathbb{R}^{2n} and \mathbb{R}^n with the subspace $\mathbb{R}^n \times \{0\}$ of \mathbb{R}^{2n}. Let $\pi : \mathbb{R}^{2n} \times \mathbb{R} \to \mathbb{R}$ denote the projection onto the last factor. Choose a neighborhood \mathcal{U} of $Id_{\mathbb{R}^{2n}}$ in $\mathcal{N}(\mathbb{R}^{2n}, \mathbb{R}^{2n})$ with respect to the C^∞ compact-open topology. Then there exist a real algebraic variety $X^* \subseteq \mathbb{R}^{2n} \times \mathbb{R}$ and a weak deformation $\beta : X^* \to X$ of X parametrized by $\pi(X^*, 0)$ such that:

(a) $X^* \cap \pi^{-1}(0) = X$ and β extends to a Nash diffeotopy of \mathbb{R}^{2n} in \mathcal{U};
(b) for each $t \in \mathbb{R}\backslash\{0\}$, the real algebraic variety $X_t := X^* \cap \pi^{-1}(t)$ may be biregularly embedded into $(F_d)^n$.

Notice that, in the statement of the Theorem, not only we may embed \tilde{X}_t, $t \neq 0$, in a product of genus $(d - 1)(d - 2)/2$ real algebraic curves all isomorphic to F_d, but that we may embed it in $(F_d)^n$ where the exponent n is the same for all real algebraic varieties which may be embedded in \mathbb{R}^n. singular ”, see [3], Remark 2.3, and use the proof of Theorem given below.

Proof of the Theorem. The proof is just a typographical modification of the proof of [3], Th. 1.8: it is the result that it is surprising, not its proof! Fix an odd integer $d \geq 1$ and $\epsilon > 0$. Consider the polynomial $G(x, y, t) \in \mathbb{R}[x, y, t]$ defined by the formula:

$$G(x, y, t) := (\epsilon tx + y(1 + t^2))^d + (-\epsilon tx + y(1 + t^2))^d - \epsilon^d t^d.$$

For each $t_0 \in \mathbb{R}$, set $D[t_0] := \{(x, y) \in \mathbb{R}^2 \mid G(x, y, t_0) = 0\}$. Notice that $D[0]$ is equal to the axis $\{y = 0\}$ and, for all $t', t'' \in \mathbb{R}\backslash\{0\}$, the plane curves $D[t']$ and $D[t'']$ are biregularly isomorphic: just make a dilatation of the y-coordinate. Call $x_1, \ldots, x_n, y_1, \ldots, y_n, t$ the coordinates of \mathbb{R}^{2n+1}. Let $G^* \subseteq \mathbb{R}^{2n+1}$ denote the algebraic subset defined by the n equations $G(x_i, y_i, t) = 0$, $i = 1, \ldots, n$. Set $X^* := G^* \cap (X \times \mathbb{R}^{n+1})$. Fix $t \neq 0$. Up to scaling, we may assume that $D[t]$ has $(x+y)^d + (-x+y)^d = 1$ as equation. Notice that the linear isomorphism $\varphi : \mathbb{R}^2 \to \mathbb{R}^2$ defined by $\varphi(x, y) := (x + y, -x + y)$ induces a biregular isomorphism from $D[t]$ to F_d. In particular, by the Implicit Function Theorem for Nash maps, there exists a Nash function on \mathbb{R} whose graph coincides with $D[t]$. If ϵ is sufficiently small, then the proof of [3], Th. 1.8, gives verbatim the proof of the Theorem.

References

MA, 1969.

Received: October 14, 2005