A Note on Operators in Hilbert C*-Modules

M. Khanehgir and M. Hassani

Dept. of Math., Islamic Azad University of Mashhad
Mashhad P.O. Box 413-91735, Iran
khanehgir@mshdiau.ac.ir
hassani@mshdiau.ac.ir

Abstract

We explore commutativity up to a unitary factor for the pair of self-adjoint operators in Hilbert C*-modules.

Mathematics Subject Classification: 46H40, 46L57

Keywords: Hilbert C*-modules, partial isometry, unitary map

1. Introduction

Let A be a C^*-algebra (not necessarily unital or commutative). An inner product A-module is a linear space E which is right A-module (with compatible scalar multiplication: $\lambda(a) = \lambda(a)$ for $x \in E, a \in A, \lambda \in \mathcal{C}$), together with a map $(x, y) \rightarrow \langle x, y \rangle: E \times E \rightarrow A$ such that

(i) $\langle x, \alpha y + \beta z \rangle = \alpha \langle x, y \rangle + \beta \langle x, z \rangle$
(ii) $\langle x, ya \rangle = \langle x, y \rangle a$ (for $x \in E, a \in A$)
(iii) $\langle x, y \rangle^* = \langle y, x \rangle$ (for $x, y \in E$)
(iv) $\langle x, x \rangle \geq 0$ if $\langle x, x \rangle = 0$ then $x = 0$.

Given Hilbert C^*-modules E and F, denoted by $L(E, F)$ the set of all (bounded) adjointable maps. Also $K(E, F)$ is the closed linear subspace
spanned by \(\{ \Theta_{x,y} : x \in F, y \in E \} \) in \(L(E, F) \), where \(\Theta_{x,y}(z) = x < y, z > \), for each \(z \in E \). Specially, if \(E = F \), we write \(L(E), K(E) \) respectively.

It is well known that \(L(E) \) is a \(C^* \)-algebra and \(K(E) \) is the closed two-sided ideal in \(L(E) \). The basic materials can see [1].

If \(E \) is a Hilbert \(C^* \)-module, \(x, y \) in \(E \) is said to be orthogonal if \(\langle x, y \rangle = 0 \). In this case, denote by \(x \perp y \).

Given a closed submodule \(F \) of \(E \), set \(F^\perp = \{ y \in E : \langle x, y \rangle = 0, \forall x \in F \} \), then \(F^\perp \) is called orthogonal complement of \(F \). Furthermore, if \(F \oplus F^\perp = E \) then \(F \) is said to be complemented submodule. We know that a closed submodule of a Hilbert \(C^* \)-module need not be complemented.

The following proposition gives an equivalent characterization of complemented closed submodule.

Proposition 1.1: Let \(A \) be a \(C^* \)-algebra, \(E \) is a Hilbert \(C^* \)-module, \(E_0 \) is a closed submodule in \(E \). The following are equivalent:

1. \(E_0 \) is a complemented submodule.
2. there is a projection \(p \) in \(L(E) \) such that \(K(E_0) \cong pK(E)p \), where \(R(p) \) is the range of \(p \).

Proof: See [2].

If \(F \) is complemented then for each \(z \) in \(E \) we can uniquely write \(z = x + y \) with \(x \) in \(F \) and \(y \) in \(F^\perp \). Just as in the case of Hilbert spaces, the equation \(x = Pz \) defines a projection \(P \) in \(L(E) \) whose range is \(F \). Conversely, if \(P \) is a projection in \(L(E) \) then the range of \(P \) is a complemented submodule of \(E \), since it is easy to check that \(ran(P)^\perp = ran(1 - P) = ker(P) \).

An operator \(u \in L(E, F) \) is said to be unitary if \(uu^* = 1_E \) and \(uu^* = 1_F \). Also if \(t \in L(E) \), then we define spectrum of \(t \) is the set \(sp(t) = \{ \lambda \in \mathbb{C} : \lambda I - t \text{ is not invertible} \} \) and we say \(t \) is positive and we denoted it by \(t \in L(E)^+ \) if \(sp(t) \subseteq \mathbb{R}^+ \).

The theorem of Miscenko which enables one to conclude that certain submodules are complemented.

Theorem 1.2: Let \(E, F \) be Hilbert \(A \)-modules and suppose that \(t \in L(E, F) \) has closed range. then

(i) \(\ker(t) \) is complemented submodule of \(E \) and \(\ker(t)^\perp = ran(t^*) \).
(ii) \(\text{ran}(t) \) is complemented submodule of \(F \) and \(\text{ran}(t) \perp = \ker(t^*) \).

(iii) the mapping \(t^* \in L(F, E) \) also has closed range.

Proof: See [1].

In the following we give some useful theorems which we need them.

Theorem 1.3: Let \(u \) be a linear map from \(E \) to \(F \). Then the following condition are equivalent:

(i) \(u \) is an isometric, surjective \(A \)-linear map.

(ii) \(u \) is a unitary element of \(L(E, F) \).

Proof: See [1].

We know that if \(u \) is isometric then \(| u(x) | = | x | \) for each \(x \in E \).

Theorem 1.4: For \(t \in L(E, F) \), \(t^*F \) and \(t^*tE \) have the same closures.

Proof: See [1].

Theorem 1.5: If \(t \in L(E)^+ \) has closed range then \(\text{ran}(t) = \text{ran}(t^{\frac{1}{2}}) \).

Proof: Trivially \(\text{ran}(t) \subseteq \text{ran}(t^{\frac{1}{2}}) \). Conversely consider \(C[z] \) denotes the algebra of all polynomials in an indeterminate \(z \) with complex coefficients and suppose that \(A \) is unital algebra. We know that the map from \(C[z] \) into \(A \) which takes \(P \) to \(P(a) \) which is \(a \in A \), is a unital homomorphism. By Stone-Weierstrass theorem (See [3]) there is a sequence of polynomials with zero constant coefficient which tends to continuous function \(\sqrt{x} \). Now we obtain \(\text{ran}(t^{\frac{1}{2}}) \subseteq \text{ran}(t) \).

Definition 1.6: An element \(C \) in \(L(E, F) \) is called a partial isometry (from \(E_0 \) to \(F_0 \)) if \(F_0 = \text{ran}(C) \) is complemented in \(F \) and there exists a complemented submodule \(E_0 \) of \(E \) such that \(C \) is isometric from \(E_0 \) onto \(F_0 \) and \(C(E_0^\perp) = \{0\} \).

Suppose \(t \in L(E, F) \) and that the closures of the ranges of \(t \) and \(t^* \) are both complemented, then define \(u : \text{ran}(|t|) \to \text{ran}(t) \) by \(u(|t|x) = tx \). It is easily seen that \(u \) is isometric. We define \(u \) on \(\overline{\text{ran}(|t|)} \) as follows.

For \(x \in \overline{\text{ran}(|t|)} \) there is a sequence \(\{a_n\}_{n \in \mathbb{N}} \subseteq \text{ran}(|t|) \) in which \(a_n \to x \) as \(n \) tends to infinity. The sequence \(\{u(a_n)\}_{n \in \mathbb{N}} \) is a Cauchy sequence in \(E \), so converges to an element of \(\overline{\text{ran}(t)} \) say \(a \). Now we define \(u(x) = a \). Also we define \(u \) is equal zero on \(\overline{\text{ran}(|t|)}^\perp \). Evidently \(t = u|t| \) and \(u \) is a partial
isometry, so t has polar decomposition.

Just as for Hilbert space, one can easily that the following theorem holds for Hilbert C^*–modules.

Theorem 1.7: For an element C of $L(E, F)$ the following condition are equivalent.

(i) C is a partial isometry.

(ii) C^*C is a projection in $L(E)$.

(iii) CC^* is a projection in $L(F)$.

(iv) $C^*C = C$.

(v) $C^*CC^* = C^*$.

Proof: See [1].

Lemma 1.8: If $t \in L(E)$ is normal then $\ker(t) = \ker(t^*)$.

Proof: We have

$$\langle t^*tx - tt^*x, x \rangle = |tx|^2 - |t^*x|^2$$

So t is normal iff $|tx| = |t^*x|$ and therefore $\ker(t) = \ker(t^*)$.

2.Main Theorem

Theorem: Let t, s be bounded self-adjoint operators on Hilbert C^*–module E and ts and $|ts|$ have closed range. The following are equivalent:

(i) $ts^2t = st^2s$.

(ii) $ts = ust$ for some unitary u.

Proof: (ii) \rightarrow (i) : Observe that $st = tsu^*$, and so $ts = ustu^*$. Hence ts commutes with u and u^*, and similarly for st. Thus we get

$$ts^2t = ustu^*ts = stuu^*ts = st^2s.$$

(ii) \rightarrow (i) : The condition (i) is equivalent to $|ts| = |st|$, where we have $|c| = (c^*c)^{\frac{1}{2}}$. Thus ts is normal. It follows that

$$\ker(ts) = \ker(st) = \ker(|ts|) = \ker(|st|).$$

Now let Q denotes the associated projection. By theorem 1.4 and 1.5 we have the ranges of these four operators are closed and all coincide. Since we have

$$st(E) = \overline{st(E)} = \overline{(ts)^*(E)} = \overline{(ts)(ts)(E)} = \overline{ts^2tE} = \overline{(st)^*E} = ts(E).$$

Let P denotes the associated projection to $\text{ran}(ts) = \text{ran}(st) = \text{ran}(|ts|) =$
ran(\mid st \mid).

Hence $P + Q = I$. By polar decomposition theorem there are partial isometries v, w such that $ts = v \mid ts \mid$, $st = w \mid st \mid$. Note that $vv^* = v^*v = ww^* = w^*w = P$. Since P is a projection in $L(E)$ associated to $\text{ran}(ts) = \text{ran}(v) = \ker(v)^\perp$ hence if $x \in \ker(v)^\perp$ then $\langle v^*v(x), x \rangle = \| v(x) \|^2 = \| x \|^2 = \langle x, x \rangle = \langle P(x), x \rangle$ and if $x \in \ker(v)$ then $\langle v^*v(x), x \rangle = 0 = \langle P(x), x \rangle$. Hence by polarization identity $v^*v = P$.

Similarly $vv^* = w^*w = ww^* = P$. It is easily verified that $\mid ts \mid = \mid ts \mid$. From this it obtains that v, v^*, w and w^* commute with $\mid ts \mid$. By assumption it follows that $\mid ts \mid = \mid st \mid$. It yields that

$$ts = v \mid ts \mid = st \mid w^* = w^* \mid ts \mid$$

and since the range of $\mid ts \mid$ is dense in $P(E)$ it follows that $v = w^*$ and $v^* = w$.

Now we have

$$ts = v \mid ts \mid = v \mid st \mid = vw^*st = v^2st.$$

We can extend $v^2 \mid_{P(E)}$ to a unitary map $u = v^2 \mid_{P(E)} \oplus Q$.

References:

Received: May 2, 2006