The Characterization of $\text{PGL}(2, p)$ for Some p by Their Element Orders

M. R. Darafsheh

Department of Mathematics and Computer Sciences
Faculty of Science, University of Tehran, Tehran, Iran
darafsheh@ut.ac.ir

A. R. Moghaddamfar and A. R. Zokayi

Department of Mathematics, Faculty of Science
K. N. Toosi University of Technology
P.O. Box 16315-1618, Tehran, Iran
and
Institute for Studies in Theoretical Physics and Mathematics (IPM)
moghadam@iust.ac.ir
zokayi@kntu.ac.ir

Abstract

For any group G, $\pi_e(G)$ denotes the set of orders of its elements. If Ω is a subset of positive integers, $h(\Omega)$ stands for the number of distinct isomorphism classes of finite groups G such that $\pi_e(G) = \Omega$. Let $\Omega = \pi_e(\text{PGL}(2, p))$, where p is a prime number and $5 \leq p < 100$. In this paper, we prove that $h(\Omega) \in \{1, \infty\}$.

Mathematics Subject Classification: 20D05

Keywords: Element order, Prime graph, Projective special linear group

1 Introduction

For any group G, we denote by $\pi_e(G)$ the set of orders of elements in G. This set is closed and partially ordered by the divisibility relation, hence, it is uniquely determined by $\mu(G)$, a subset of its elements that is maximal under the divisibility relation. If Ω is a subset of positive integers, $h(\Omega)$ stands for the number of distinct isomorphism classes of finite groups G such that $\pi_e(G) = \Omega$.

Ω. It is clear that $h(\pi_e(G)) \geq 1$ for any group G. A group G is called k-distinguishable if $h(\pi_e(G)) = k < \infty$; otherwise G is called non-distinguishable. Also a 1-distinguishable group is called a characterizable group.

In [7], V. D. Mazurov proved the following result: Let $G = \text{PGL}(r, p^s)$. If p, r are odd primes, $p - 1$ is divisible by r but not by r^2, and s is a natural number not divisible by r, then $h(\pi_e(G)) = \infty$.

In [5] and [10], W. J. Shi proved the following result: If $\Omega = \pi_e(\text{PGL}(2, p))$, where p is a prime number and $5 \leq p \leq 19$ then $h(\Omega) \in \{1, \infty\}$.

In the present article, we prove the following:

Main Theorem Let p be a prime number and $5 \leq p < 100$. Further, assume that $\Omega = \pi_e(\text{PGL}(2, p))$. Then $h(\Omega) \in \{1, \infty\}$.

Throughout this paper, all groups considered are finite and simple groups are non-Abelian. Given a group G, denote by $\pi(G)$ the set of all prime divisors of the order of G. All further unexplained notations are standard and can be found for instance in [1] and [3].

2 Preliminary Results

Our arguments depend on the prime graph components of simple groups (see [4] and [12]). The prime graph $\Gamma(G)$ of a group G is a graph whose vertices are prime divisors of the order of G and two distinct primes p, q are adjacent, if G contains an element of order pq. Denote the connected components of the prime graph of G by $\pi_i = \pi_i(G), i = 1, 2, \ldots, t(G)$, where $t(G)$ is the number of connected components. When $|G|$ is even, let π_1 be the connected component containing 2. A group G is called 2-Frobenius if there exists a normal series $1 \triangleleft H \triangleleft K \triangleleft G$ of G such that H is the Frobenius kernel of K and K/H is the Frobenius kernel of G/H.

We shall also use the following unpublished result of K. W Gruenberg and O. H. Kegel (see [12], Theorem A).

Lemma 2.1 If G is a group such that $t(G) \geq 2$, then G has one of the following structures:

(a) Frobenius or 2-Frobenius;
(b) simple;
(c) an extension of a π_1-group by a simple group;
(d) simple by π_1; or
(e) π_1 by simple by π_1.

Remark. In fact, when G is neither Frobenius nor 2-Frobenius, by Lemma 2.1, G has a normal series $1 \triangleleft N \triangleleft G_1 \triangleleft G$ such that N is a nilpotent π_1-group,
$G_1 = G_1/N$ is a simple group, and G/G_1 is a solvable π_1-group.

The following lemma is taken from [11].

Lemma 2.2 Let G be a group and N be a minimal normal subgroup of G. We further, suppose, N is an elementary Abelian p-group, then $h(\pi_e(G)) = \infty$. In particular, $h(\pi_e(G)) = \infty$ when G is a solvable group.

We also need the following result:

Lemma 2.3 Let G be a finite non-solvable group. Assume that there exists $n = 2^a3^b5^c$, where $a, b, c \geq 0$, and $n \neq 8, 12, 20$, such that $n \in \pi_e(G)\setminus\pi_e(SL(2, 5))$. Then G is neither Frobenius nor 2-Frobenius.

Proof. Since G is non-solvable, G cannot be 2-Frobenius. If G is a Frobenius group with kernel K and complement H then H is non-solvable. Now by the structure of non-solvable Frobenius complements ([9], Theorem 18.6), we know that H has a normal subgroup H_0 of index ≤ 2 such that $H_0 \cong SL(2, 5) \times Z$, where every Sylow subgroup of Z is cyclic and $\pi(Z) \cap \{2, 3, 5\} = \emptyset$. Since $\pi_e(SL(2, 5)) = \{1, 2, 3, 4, 5, 6, 10\}$, the number of prime graph components of H is 1 and the corresponding number for G must be 2. In fact $T(G) = \{\pi_1(G) = \pi(H), \pi_2(G) = \pi(K)\}$. Now from $n = 2^a3^b5^c \in \pi_e(G)\setminus\pi_e(SL(2, 5))$ it follows that $n \in \pi_e(H)$, and so there exists $1 \neq x \in H$ such that $o(x) = n$. As $n \notin \pi_e(SL(2, 5))$, it follows that $x \notin H_0$ and hence $|H : H_0| = 2$. This implies $x^2 \in H_0$ and $o(x^2) = n/(2, n) \in \pi_e(SL(2, 5))$. Therefore, $(2, n) = 2$ and $n/2 \in \pi_e(SL(2, 5))$. Now we obtain $n \in \{8, 12, 20\}$, which contradicts the assumption. The lemma is proved. \square

Lemma 2.4 Let G be a finite non-solvable group and $\pi_e(G) = \pi_e(PGL(2, p))$, where $p \geq 23$ is a prime number. Then G is neither Frobenius nor 2-Frobenius.

Proof. We know $\mu(PGL(2, p)) = \{p−1, p, p+1\}$. Clearly G is not 2-Frobenius, since G in non-solvable. Assume G is a Frobenius group with kernel K and complement H, then as before H has a normal subgroup H_0 of index ≤ 2 and $H_0 \cong SL(2, 5) \times Z$, where every Sylow subgroup of Z is cyclic and $\pi(Z)\cap\pi(30) = \emptyset$. Moreover, we have

$\pi_1(G) = \pi(H) = \pi(p^2 − 1)$ and $\pi_2(G) = \pi(K) = \{p\}.$

In particular $\{2, 3, 5\} \subset \pi(G)$. From Lemma 2.3, we get $15 \notin \pi_e(G)$, and so $5|p+1$ and $3|p−1$ or $5|p−1$ and $3|p+1$, by the structure consideration of $\pi_e(G)$. Therefore, $Z = 1$, which forces $\pi(H) = \{2, 3, 5\}$, whence $\pi_e(G) = \{2, 3, 5, p\}$. On the other hand, by Lemma 2.3 and the structure of $\pi_e(G)$, we must have
$p^2 - 1 = 2^\alpha \cdot 3.5$ where $\alpha > 5$ as $p \geq 23$. But then $2^4 \in \pi_e(G)$, which is a contradiction by Lemma 2.3. The proof is complete now. □

We also need the following Lemma.

Lemma 2.5 Let G be a simple group such that $\{p\} \subset \pi(G) \subseteq \pi(p!)$, where p is a prime number and $23 \leq p < 100$. Then G is given in Table I. Moreover, if $\{p\} \subset \pi(G) \subseteq \pi(\text{PSL}(2,p))$ then:

(i) For $p = 31$, $G \cong \text{PSL}(2,31)$ or $\text{PSL}(3,5)$,
(ii) For $p \neq 31$, $G \cong \text{PSL}(2,p)$.

Proof. Considering the fact that $\{p\} \subset \pi(G) \subseteq \pi(p!)$ and by referring to [2] and [8], for $p \neq 37$ we have the simple groups contained in Table I. When $p = 37$, the proof is similar as in ([2], Lemma 2.6). The rest of proof, when $\{p\} \subset \pi(G) \subseteq \pi(\text{PSL}(2,p))$, follows by checking the prime factors of $|G|$. □

We also need the following result of V. D. Mazurov ([6], Lemma 1).

Lemma 2.6 Let N be a normal subgroup of H. Assume that H/N is a Frobenius group with kernel A and cyclic complement B. If $(|A|, |N|) = 1$ and A is not contained in $NC_G(N)/N$, then $p|B| \in \pi_e(H)$, where p is a prime factor of $|N|$.

3 Proof of the Main Theorem

Proof of the Main Theorem. It is well known that

$\text{Aut}(\text{PSL}(2,p^n)) = \text{PGL}(2,p^n) : Z_n$.

When $n = 1$, we have $\text{Aut}(\text{PSL}(2,p)) = \text{PGL}(2,p)$, and hence

$\mu(\text{PGL}(2,p)) = \mu(\text{Aut}(\text{PSL}(2,p))) = \{p - 1, p, p + 1\}$.

Let G be a group such that $\pi_e(G) = \pi_e(\text{PSL}(2,p)) = \{p, \text{all factors of } p - 1 \text{ and } p + 1\}$. Then the connected components of the prime graph of G are:

$\pi_1 = \pi(p^2 - 1)$ and $\pi_2 = \{p\}$.

When $p < 23$, it has been proved that $h(\pi_e(G)) \in \{1, \infty\}$ (see [8] and [9]). Thus, we assume $p \geq 23$. If G is solvable, then $h(\pi_e(G)) = \infty$, by Lemma 2.2. Hence, we suppose G is non-solvable. Now by Lemma 2.4, G is neither Frobenius nor 2-Frobenius. On the other hand, by Lemma 2.1, there exists a normal series $1 \leq N < G_1 \leq G$ such that N is a nilpotent π_1-group, G_1/N is a simple group, and G/G_1 is a solvable π_1-group. Since $G_1/N(G_1) = 1$, we have
\[G = \frac{N_{G/N}(G_1)}{C_{G/N}(G_1)} \cong \text{a subgroup of } \text{Aut}(G_1), \]

thus we may assume that \(G/N \leq \text{Aut}(G_1) \).

Table I. Simple groups with condition \(\{p\} \subset \pi(G) \subseteq \pi(p!) \).

<table>
<thead>
<tr>
<th>(p)</th>
<th>Finite simple groups</th>
</tr>
</thead>
<tbody>
<tr>
<td>23</td>
<td>(A_n, n = 23, 24, 25, 26, 27, 28; M_{23}, M_{24}, Co_3, Co_2, Co_1, Fi_{23}; A_1(23), 2A_2(23).)</td>
</tr>
<tr>
<td>29</td>
<td>(A_n, n = 29, 30; Ru, F_{24}'; A_1(17^2), S_4(17), 2A_3(17), A_1(29).)</td>
</tr>
<tr>
<td>31</td>
<td>(A_n, n = 31, 32, 33, 34, 35, 36; O'N, Th; A_4(2), A_5(2), A_4(2^2), A_5(2^2), A_1(2^5), S_12(2), O_{10}^+(2), O_{12}^+(2), O_{12}(2), A_2(5), A_3(5), A_2(5^2), A_1(5^3), O_7(5), S_5(5), O_8^+(5), G_2(5), A_1(31), 2A_2(31).)</td>
</tr>
<tr>
<td>37</td>
<td>(A_n, n = 37, 38, 39, 40; 2A_2(3^4), 2A_3(3^3), 2G_2(3^3), A_1(11^3), G_2(11), 2A_2(11), A_1(31^2), S_4(31), 2A_3(31), A_1(37).)</td>
</tr>
<tr>
<td>41</td>
<td>(A_n, n = 41, 42; A_2(1)^4), A_3(3^2), S_4(2^2), A_4(2^2), A_5(2^2), S_5(2^2), A_1(3^4), O_9(3), S_1(3^2), S_8(3), O_{10}^+(3), O_{10}^-(3), O_{11}(3), A_1(41), A_1(41^2), S_4(41).)</td>
</tr>
<tr>
<td>44</td>
<td>(A_n, n = 43, 44, 45, 46; A_4; 2A_6(2), 2A_7(2), 2A_8(2), 2A_9(2), O_{14}^+(2), A_2(7^2), A_1(7^3), O_7(7), S_7(7), O_8^+(7), G_2(7), A_2(7), 2A_3(7), 2A_2(37), A_1(43), A_1(43^2), S_4(43).)</td>
</tr>
<tr>
<td>47</td>
<td>(A_n, n = 47, 48, 49, 50, 51, 52; B = F_{24}'; A_1(47), A_1(47^2), S_4(47).)</td>
</tr>
<tr>
<td>53</td>
<td>(A_n, n = 53, 54, 55, 56, 57, 58; A_1(23^2), B_2(23), 2A_3(23), A_1(53).)</td>
</tr>
<tr>
<td>59</td>
<td>(A_n, n = 59, 60; A_1(59).)</td>
</tr>
<tr>
<td>61</td>
<td>(A_n, n = 61, 62, 63, 64, 65, 66; A_4(3^2), A_1(3^3), A_2(5), B_5(3), C_5(3), A_1(11^2), A_2(11^2), B_2(11), B_3(11), C_3(11), D_4(11), 2A_3(11), A_2(13), A_3(13), A_2(47), A_3(47), A_1(61).)</td>
</tr>
<tr>
<td>67</td>
<td>(A_n, n = 67, 68, 69, 70; Ly; A_2(29), A_2(37), A_1(37^2), G_2(37), A_1(67).)</td>
</tr>
<tr>
<td>71</td>
<td>(A_n, n = 71, 72; F_1; A_4(5), A_5(5), A_1(71).)</td>
</tr>
<tr>
<td>73</td>
<td>(A_n, n = 73, 74, 75, 76, 77, 78; A_2(2^4), A_1(2^4), G_2(2^4), C_4(2^4), E_6(2), B_3(2^4), C_3(2^4), A_1(3^6), A_5(3^2), B_6(3), B_2(3^3), C_6(3), D_4(3^2), G_2(3^2), F_4(3), 2A_2(3^2), 2A_3(3^3), 2D_6(3), 2E_6(3), A_1(73), A_1(73^2), B_2(73).)</td>
</tr>
<tr>
<td>79</td>
<td>(A_n, n = 79, 80, 81, 82; A_2(23), A_3(23), A_2(23^2), A_1(23^4), B_3(23), C_3(23), D_4(23), G_2(23), A_1(79), A_2(79).)</td>
</tr>
<tr>
<td>83</td>
<td>(A_n, n = 83, 84, 85, 86, 87, 88; A_1(83), A_1(83^2).)</td>
</tr>
<tr>
<td>89</td>
<td>(A_n, n = 89, 90, 91, 92, 93, 94, 95, 96; A_1(89).)</td>
</tr>
<tr>
<td>97</td>
<td>(A_n, n = 97, 98, 99, 100; A_2(61), A_1(97).)</td>
</tr>
</tbody>
</table>

Note that one of the components of the prime graph of \(\overline{G}_1 \) must be \(\{p\} \) and so \(\{p\} \subseteq \pi(\overline{G}_1) \subseteq \pi(G) = \pi(\text{PSL}(2, p)) \). Now according to Lemma 2.5, if \(p = 31 \) we have \(\overline{G}_1 \cong \text{PSL}(2, 31) \) or \(\text{PSL}(3, 5) \), and if \(p \neq 31 \) then \(\overline{G}_1 \cong \text{PSL}(2, p) \). We claim that in all cases \(\overline{G}_1 \cong \text{PSL}(2, p) \). In fact, if \(p = 31 \)
and $G_1 \cong \text{PSL}(3, 5)$, then $24 \in \pi_e(G_1) = \pi_e(\text{PSL}(5, 3))$ but $24 \notin \pi_e(G) = \pi_e(\text{PSL}(2, 31))$, and this is a contradiction. Therefore $G_1 \cong \text{PSL}(2, p)$.

Let P/N be a Sylow p-subgroup of G_1 and X/N be the normalizer in G_1 of P/N. Then X/N is a Frobenius group of order $p(p - 1)/2$, with cyclic complement of order $(p - 1)/2$. Now, by lemma 2.6, we deduce that N is a 2-group. First, suppose that $N = 1$. Then $G_1 = \text{PSL}(2, p)$. Moreover we may assume that $G_1 \leq G \leq \text{Aut}(G_1)$. Since $|\text{Out}(\text{PSL}(2, p))| = 2$, it follows that $G \cong \text{PSL}(2, p)$ or $G \cong \text{Aut}(\text{PSL}(2, p)) \cong \text{PGL}(2, p)$. But since $p + 1 \in \pi_e(\text{PGL}(2, p)) \setminus \pi_e(\text{PSL}(2, p))$, we have $G \cong \text{PGL}(2, p)$. Next, suppose that $N \neq 1$. Without loss of generality, we may assume that N is an elementary Abelian 2-subgroup of G, by considering G/M, where M is the preimage of $\Phi(N/O_2(G))$ in G. Now from Lemma 2.2, we see that $h(\pi_e(G)) = \infty$. Therefore, the proof of Main Theorem is complete. \qed

References

Received: February 8, 2006