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Abstract

In this paper two algorithms based on the the divisibility properties
of binomial expressions are introduced. The mathematical foundation
lies in the connection that exists between binomial expressions and the
number of carries that result in the sum in different bases, of the vari-
ables that form the binomial expression. The first one decomposes an
integer into its prime factorization, while the second one answers if given
two twin integers whether they are twin primes or not by just verifying
one condition. The proposed procedures have the inconvenience of re-
quiring the knowledge of the primes up to some fix number however, by
a slight modification of the first algorithm this can be overcome. The
mathematical approach applied is novice, and both algorithms are new.
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1 Introduction

There are many algorithms for integer factorization however, they are not
efficient (deterministic or random polynomial-time) in fact they are compu-
tationally intractable. Most of the factoring algorithms fall into one of the
two following classes: The running time depending mainly on the size of N
the number to be factored or on the size of p the factor of N . However its
running time is at best sub-exponential (Polynomial ⊂ Super-polynomial ⊂
Sub-exponential ⊂ Exponential) therefore why should we care in studying
them. The main reasons (to mention some) are: they can be of some aid for
further algorithm developments and for the mathematics involved in their cre-
ation which can also lead to new ideas. In this paper two algorithms based on
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the the divisibility properties of binomial expressions are presented. The first
one decomposes an integer into its prime factorization while the second one
answers if given two twin integers whether they are twin primes or not by just
verifying one condition. Their mathematical justification results from the work
done by Kummer in 1852 [1] in relation to the connection that exists between
binomial expressions and the number of carries that result in the sum in dif-
ferent bases, of the variables that form the binomial expression. The necessary
and sufficient conditions provided for twin prime verification were inspired in
the work presented in [2]. The proposed procedures have the inconvenience
of requiring the knowledge of the primes up to some fix number however by
a slight modification of the first algorithm this can be overcome. The mathe-
matical approach applied is novice, and both algorithms are new. The paper is
organized as follows. Section 1, gives the mathematical preliminaries needed to
understand the rest of the paper. Section 2, deals with the prime factorization
algorithm while section 3, with the twin prime one. Finally, some concluding
remarks are given.

2 Preliminaries

Definition 2.1 Let n and p be integers, the p−adic expansion of n (which
is the representation of n in base p) is given by,

n = a0 + a1p + a2p
2 + ... + ampm (1)

where the digits ai ∈ {o...., p − 1} and m is an integer. Alternatively n is said
to have the p.adic expansion,

n = (amam−1 · · ·a1a0)p (2)

Definition 2.2 Let n and k be integers, the p−adic addition of n and k
consists in, the addition of its respective p−adic representations in base p.
The number of carries in the p−adic addition of n and k will be denoted by
τ = cp(n, k).

The main result of this section, which is next stated, is due to Kummer 1852
[1] , (for completeness purposes the proof is supplied).

Theorem 2.3 Let τ = cp(n, k) be the number of carries in the p−adic

addition of n and k then,

(
n + k

k

)
is divisible by the prime power pτ but not

by pτ+1.

In order to derive this beautiful theorem the following result, called Legendre‘s
formula (1808), is used.
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Lemma 2.4 Let μ(n) be the largest exponent of the prime power pμ(n) which
divides n! then,

μ(n) =
n − σ

p − 1
(3)

where σ is the sum of the p−adic coefficients of ai ∈ {0...., p − 1} of n.

Proof 2.5 From the identity μ(n) =
∞∑
i=1

⌊
n
pi

⌋
Legendre‘s formula is equiv-

alent to
∞∑
i=1

⌊
n
pi

⌋
(p − 1) = n − σ which is next established. Using the p−adic

representation of n and the definition of the floor function
⌊

n
pi

⌋
= ai + ai+1p +

a2p
2 + ... + ampm−i, i ≤ m. Next, computing the two sums one gets
∞∑
i=1

⌊
n
pi

⌋
(p) =

∞∑
i=1

(aip + ai+1p
2 + ... + amp(m−i+1))

= a1p + a2p
2 + a3p

3 + · · · + ampm

+ a2p + a3p
2 + · · · + ampm−1

+ a3p + . . . + ampm−2

...
+ amp

∞∑
i=1

⌊
n
pi

⌋
=

∞∑
i=1

(ai + ai+1p + ... + amp(m−i))

= a1 + a2p + a3p
2 + · · · + ampm−1

+ a2 + a3p + · · · + ampm−2

+ a3 + . . . + ampm−3

...
+ am.

Finally performing the difference between the two sums
∞∑
i=1

⌊
n
pi

⌋
(p− 1) = (a1p + a2p

2 + · · ·+ ampm)− (a1 + a2 + · · ·+ am) = (n− a0)−
(σ − a0) = n − σ, which proves the formula.

Next, the theorem is proved.

Proof 2.6 Let the p−adic expansion of n and k be n = a0 + a1p + a2p
2 +

...+ampm, and k = b0 + b1p+ b2p
2 + ...+ bmpm where ai, bi ∈ {o...., p−1}. Now

if pτ is the largest prime power which divides

(
n + k

k

)
then ν = μ(n + k) −

μ(n) − μ(k). Therefore, it remains to prove that the following identity holds

cp(n, k) = μ(n + k) − μ(n) − μ(k). (4)

Carrying out the p−adic addition of n and k produces carries ε0, ε1, ... (ob-

tained from ε0 =
⌊

a0+b0
p

⌋
and εi =

⌊
ai+bi+εi−1

p

⌋
, i = 1, 2, ...), therefore, the
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sum of carries takes the form cp(n, k) =
∞∑
i=0

εi. On the other hand, the p−adic

representation of the sum n + k can be expressed as n + k =
∞∑
i=0

cip
i where

ci ∈ {0...., p−1}. Moreover, the ci digits of this addition in terms of those of n
and k and the carries εi is given by the formula ci = ai +bi +εi−1−εip, ε−1 = 0
for i = 0, 1, ...
Finally, employing this last formula and Legendre‘s identity, 4 is shown to be
true as can be seen in the next computation,

ν = μ(n + k) − μ(n) − μ(k) =
n+k−

∞∑
i=0

ci

p−1
−

n−
∞∑

i=0

ai

p−1
−

k−
∞∑

i=0

bi

p−1
=

1
p−1

( ∞∑
i=0

ai +
∞∑
i=0

bi −∑
(ai + bi + εi−1 − εip)

)
= 1

p−1

( ∞∑
i=0

εip − εi−1

)
=

1
p−1

( ∞∑
i=0

εi(p − 1)
)

=
∞∑
i=0

εi = cp(n, k). Therefore, theorem 2.3 is established.

Corollary 2.7 Let n be any integer and p a prime number (≤ n). Set
τ = cp(n − 1, 1) then, n is divided by the prime power pτ but not by pτ+1.

The next result is related to twin prime numbers.

Theorem 2.8 Let 2n − 1 and 2n + 1 be any two numbers with n ≥ 3 and
consider the set ΠT = {p : p is a prime such that 3 ≤ p ≤ √

2n + 1}. Then the

pair (2n−1, 2n+1) is a twin prime pair if and only if ∀p ε ΠT , p |
(

n + p−3
2

p − 2

)
.

Moreover if p does not divide

(
n + p−3

2

p − 2

)
then p divides either 2n−1 or 2n+1.

Proof 2.9 First, assume that the pair (2n− 1, 2n+ 1) is a twin prime pair

we must show that ∀pεΠ, p |
(

n + p−3
2

p − 2

)
. The following result borrowed from

[2] is used in order to prove the claim.

Lemma 2.10 The expression

(
n + p−3

2

p − 2

) [
(2n−1)(2n+1)

p

]
is an integer when-

ever n ≥ 1 and (0 ≤ p−3
2

≤ n − 1).

Since (2n − 1), (2n + 1) and p are primes (p and n satisfying the bound

condition) (2n−1)(2n+1)
p

is a rational number therefore for the whole expression

to become an integer it is needed that, p |
(

n + p−3
2

p − 2

)
.

Now let us prove the converse. Assume that the pair (2n − 1, 2n + 1) is not
a twin prime. If p | (2n − 1) ⇒ 2n − 1 = p(2m + 1) with m ≥ 1. Then
n + p−3

2
= p − 1 + mp and the binomial coefficient becomes
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(p−1+mp)(p−2+mp)···(2+mp)
(p−2)!

.

In case p | (2n + 1) we get that

(p−2+mp)(p−1+mp)···(1+mp)
(p−2)!

.

In either case p does not divide

(
n + p−3

2

p − 2

)
.

Finally, if p does not divide

(
n + p−3

2

p − 2

)
since

(
n + p−3

2

p − 2

) [
(2n−1)(2n+1)

p

]
is

an integer, p must divide either 2n − 1 or 2n + 1.

3 Integer Factorization

This section provides an algorithm for integer factorization whose proof follows
directly from corollary 2.7. The time taken to compute the factorization for
several sizes of n and different computer platform systems is depicted in two
tables.
Algorithm
Step 1. Enter n.
Step 2. Do ∀pε ΠF = {p : p is a prime ≤ √

n} (where a numeration of the

elements of ΠF will be denoted by {qki
}#(ΠF )

i=1 ) the qki
adic addition of n − 1

and 1, compute the number of carries cqki
. Set k = q

cqk1
k1

· qcqk2
k2

· ... · q
cqk#(ΠF )

k√
n

.

Step 3. If k = 1 then n is prime otherwise, n is composite and its prime
factorization is given by n = kq with q = n

k
.

Remark 3.1 Notice that the procedure has the inconvenience of requiring
the knowledge of the set ΠF however, the same algorithm (with a slight modi-
fication) can be used to generate it.

Assuming that n is such that all additions up to π(
√

n) have to be computed,
(where π(x) is the prime counting function), the next two tables summarize the
time taken by the algorithm to make the factorization. The first one provides
a comparison between a system running under a Pentium 4, 2GHz processor
and the Bluegene, 700MHz (the most powerful system available today) while
the second one makes a comparison between different number cf computers
connected in parallel.

n Pentium 4 Bluegene
1030 11.93 min .5 min
1038 65 days 3.5 days
1040 153 years 35 days

Table 1
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n 1 Serial computer 15 Parallel μp 50 Parallel μp 100 Parallel μp
1016 1 min 4 sec 1.2sec .6sec
1020 1.26hr 6min 1.8min 54sec
1030 9 years 219 days 66 days 33 days

Table 2

Remark 3.2 As can be seen the time consumed grows exponentially in
terms of the size of n and it becomes quite large for relatively small n’s.

4 Twin Primes

In this section an algorithm for twin primes based on theorems 2.3 and 2.8 is
presented.
Algorithm
Step 1. Enter n.
Step 2. Do ∀pε ΠT = {p : p is a prime such that 3 ≤ p ≤ √

2n + 1} (where

a numeration of the elements of ΠT will be denoted by {qki
}#(ΠT )

i=1 ) the qki
adic

addition of n + p−3
2

− (p − 2) and p − 2, compute the number of carries cqki
.

Step 3. If the number of carries is such that cqki
≥ 1 ∀pε ΠF then the pair of

integers (2n − 1, 2n + 1) is a twin prime pair otherwise is not and p divides
either 2n − 1 or 2n + 1.

Remark 4.1 Notice that the procedure has the inconvenience of requiring
the knowledge of the set ΠT however, the algorithm proposed in section 3 (with
a slight modification) can be used to generate it.

Example 4.2

• 1. Take n = 12 ⇒ ΠT = {3, 5}. Next computing the carries of the 3
and 5 addition of (11,1) and (10,3) we obtain carry in the first one but
no carry for the second one therefore the pair is not a twin prime pair.
Even more 5 | (2n + 1 = 25)

• 2. Take n = 15 ⇒ ΠT = {3, 5}. Next computing the carries of the 3 and
5 addition of (14,1) and (13,3) we obtain carries for both of them from
where we conclude that the twin pair is a twin prime pair.
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