Construction of singular surfaces over a finite field

E. Ballico¹

Dept. of Mathematics, University of Trento 38050 Povo (TN), Italy ballico@science.unitn.it

Abstract. Fix a prime power q and integers $m \geq 2$, $\sigma > 0$, x > 0, $g \geq 0$, $d \geq m\sigma + 1$ such that $q \geq (\delta - 1)\delta^3$, where $\delta := d^3 + 3dx + 4x + 2g - 2$. Let $C \subset \mathbf{P}^3$ be a smooth degree x curve defined over \mathbb{F}_q such that $h^1(\mathbf{P}^3, \mathcal{I}_C(\sigma - 1)) = h^1(C, \mathcal{O}_C(\sigma - 2)) = 0$ and $p_a(C) = g$. Here we prove the existence of a degree d surface $X \subseteq \mathbf{P}^3$ defined over \mathbb{F}_q , such that $\mathrm{Sing}(X) = C$ and X has ordinary multiplicity m along C, i.e. for every $P \in C(\bar{F}_q)$ the tangent cone of X at P is reduced and it is the union of m distinct planes containing the tangent line of C at P.

Mathematics Subject Classification: 14J25; 14J70; 14N05; 12E20; 14B05; 14B25

Keywords: singular hypersurface; singular surface; surfaces over a finite field

1. Singular surfaces over a finite field

Many existence theorems are easy over an algebraically closed base field K. When $K = \bar{F}_p$ there is a large p-power q such that a solution may be defined over \mathbb{F}_q with q not too large. Here we prove the existence of certain degree d surfaces $X \subset \mathbf{P}^3$ with as singular locus a prescribed smooth curve and with a prescribed multiplicity at each point of it and defined over \mathbb{F}_q . More precisely, we prove the following result.

Theorem 1. Fix a prime power q and integers $m \geq 2$, $\sigma > 0$, x > 0, $g \geq 0$, $d \geq m\sigma + 1$ such that $q \geq (\delta - 1)\delta^3$, where $\delta := d^3 + 3dx + 4x + 2g - 2$. Let $C \subset \mathbf{P}^3$ be a smooth degree x curve defined over \mathbb{F}_q such that $h^1(\mathbf{P}^3, \mathcal{I}_C(\sigma - 1)) = h^1(C, \mathcal{O}_C(\sigma - 2)) = 0$ and $p_a(C) = g$. Then there exists a degree d surface $X \subseteq \mathbf{P}^3$ defined over \mathbb{F}_q , such that Sing(X) = C and X has ordinary multiplicity m along C, i.e. for every $P \in C(\bar{F}_q)$ the tangent cone of X at P is reduced and it is the union of m distinct planes containing the tangent line of C at P.

By Castelnuovo-Mumford's lemma the homogeneous ideal of C is generated by forms of degree at most σ . In the statement of Theorem 1 we do not assume that C is connected. When C is connected we may take $\sigma = x - 1$, and all cases in which we cannot take $\sigma = x - 2$ are classified ([3]).

¹The author was partially supported by MIUR and GNSAGA of INdAM (Italy)

1596 E. Ballico

Lemma 1. Let $C \subset \mathbf{P}^3$ be an integral curve such that

$$h^{1}(\mathbf{P}^{3}, \mathcal{I}_{C}(\sigma - 1)) = h^{1}(C, \mathcal{O}_{C}(\sigma - 2)) = 0.$$

Fix an integer $t \geq \sigma + 1$, $P \in C_{reg}$ and a tangent vector τ of \mathbf{P}^3 at P. Then $h^1(\mathbf{P}^3, \mathcal{I}_{C \cup \tau}(z)) = h^2(\mathbf{P}^3, \mathcal{I}_{C \cup \tau}(z-1)) = 0$ for all $z \geq \sigma$, the homogeneous ideal of $C \cup \tau$ is generated by forms of degree at most $\sigma + 1$ and there exists a degree t surface containing $C \cup \tau$, but smooth at P.

Proof. If τ is tangent to C, then $\tau \subset C$ and hence there is nothing to prove. Thus we may assume that τ is not tangent to C at P. By Castelnuovo-Mumford's lemma it is sufficient to prove $h^1(\mathbf{P}^3, \mathcal{I}_{C \cup \tau}(\sigma)) = h^2(\mathbf{P}^3, \mathcal{I}_{C \cup \tau}(\sigma-1)) = 0$; indeed, note that since the tangent space of $C \cup \tau$ is two-dimensional and $C \cup \tau$ is scheme-theoretically cut out by degree t surfaces, at least one degree t surface containing $C \cup \tau$ must be smooth at P. Since $\dim(\tau) = 0$, we have $h^2(\mathbf{P}^3, \mathcal{I}_{C \cup \tau}(\sigma-1)) = h^1(C \cup \tau, \mathcal{O}_{C \cup \tau}(\sigma-1)) = h^1(C, \mathcal{O}_C(\sigma-1)) = 0$. Let $H \subset \mathbf{P}^3$ be a plane containing τ and transversal to C at P. Since C is the residual scheme of $C \cup \tau$ with respect to H, there is the following exact sequence:

(1)
$$0 \to \mathcal{I}_C(\sigma - 1) \to \mathcal{I}_{C \cup \tau}(\sigma) \to \mathcal{I}_{(C \cap \tau) \cap H}(\sigma) \to 0$$

Hence it is sufficient to prove $h^1(H, \mathcal{I}_{(C\cap\tau)\cap H}(\sigma)) = 0$. We know that $h^1(H, \mathcal{I}_{C\cap H, H}(\sigma - 1)) = 0$. Let $R \subset H$ be the line spanned by τ . Since the homogeneous ideal of $C \cap H$ in H is generated by forms of degree at most σ , we have length $(C \cap R) \leq \sigma$. Thus length $(C \cap T) \cap R$ is $(C \cap T) \cap R$ with respect to R is $(C \cap H) \setminus (C \cap R)$ we have an exact sequence

$$(2) 0 \to \mathcal{I}_{(C \cap H) \setminus (C \cap R), H}(\sigma - 1) \to \mathcal{I}_{(C \cup \tau) \cap H, H}(\sigma) \to \mathcal{I}_{C \cap R, R}(\sigma) \to 0$$

We have $h^1(R, \mathcal{I}_{C \cap R, R}(\sigma)) = 0$, because $\operatorname{length}((C \cup \tau) \cap R)) \leq \sigma + 1$. We have $H^1(H, \mathcal{I}_{(C \cap H) \setminus (C \cap R), H}(\sigma - 1)) \leq h^1(H, \mathcal{I}_{C \cap H, H}(\sigma - 1)) = 0$.

Remark 1. Let X be an integral projective variety and $L, M \in \text{Pic}(W)$. If L is very ample and M is spanned, then $L \otimes M$ is very ample.

Proof of Theorem 1. Let N_C denote the normal sheaf of C in \mathbf{P}^3 . Since C is smooth, N_C is a rank 2 vector bundle with degree 2g-2+4x. Let $w:W\to \mathbf{P}^3$ be the blowing-up of C. Set $E:=w^{-1}(C)$ and $\mathcal{O}_W(1):=w^*(\mathcal{O}_{\mathbf{P}^3}(1))$. Hence E and $\mathcal{O}_W(1)$ freely generate $\mathrm{Pic}(W)$. We have $\mathcal{O}_W\cdot E\cdot E=-x$, $\mathcal{O}_W(1)\cdot \mathcal{O}_W(1)\cdot E=0$, $\mathcal{O}_W(1)^3=1$ and $E^3=-4x+2-2g$ ([2], Prop. 6.7). For all integers t,c set $\mathcal{L}_{t,c}:=\mathcal{O}_W(t)(-cE)$. Notice that $\mathcal{L}_{d,m}^3=d^3+3dx+4x+2g-2=\delta$.

(a) Here we will check that $\mathcal{L}_{t,1}$ is spanned for all $t \geq \sigma$. Fix $Q \in W$. First assume $Q \notin E$. Thus $w(Q) \notin C$. Since $t \geq \sigma$, there is a degree t surface $A \subset \mathbf{P}^3$ containg C and with $w(Q) \notin C$. The strict transform A' of A in W is an element of $|\mathcal{L}_{t,c}|$ for some integer $c \geq 1$. Hence $A'' := A' + (c-1)(E) \in |\mathcal{L}_{t,1}|$ and $Q \notin A''$. Now assume $Q \in E$. Thus Q represents a tangent vector τ of \mathbf{P}^3 at w(Q) not in the tangent line to C at P. Since C is scheme-theoretically cut out inside \mathbf{P}^3 by all degree t hypersurfaces containing C, there is one such surface B whose tangent plane at w(Q) does not contain τ . Use the strict transform of B to show that Q is not in the base locus of $|\mathcal{L}_{t,1}|$.

- (b) Here we will check that $\mathcal{L}_{t,1}$ is very ample for all $t \geq \sigma + 1$. It is sufficient to check that $h^0(W, \mathcal{L}_{t,1}(-Z)) = h^0(W, \mathcal{L}_{t,1}) 2$ for all length two zero-dimensional schemes $Z \subset W$. We need to distinguish 6 cases:
 - (i) Z is reduced, say $Z = \{Q, Q'\}$, with $Q \notin E$ and $Q' \notin E$;
 - (ii) Z is reduced, say $Z = \{Q, Q'\}$, with $Q \notin E$ and $Q' \in E$;
- (iii) Z is reduced and $Z \subset E$;
- (iv) Z is not reduced and $Q := Z_{red} \notin E$.
- (v) Z is not reduced, $Q := Z_{red} \in E$ and Z is not in the tangent plane to E at Q;
- (vi) Z is not reduced and $Z \subset E$.

We will only check case (vi). By part (a) it is sufficient to check that for all $P \in C$ and all tangent vectors τ of \mathbf{P}^3 at P there is a degree t surface $U \subset \mathbf{P}^3$ such that $C \cup \tau \subset U$ and U is smooth at P. This is proved in Lemma 1. By Remark 1 our assumption on the integer d implies that $\mathcal{L}_{d,m}$ is very ample. By [1], Th. 1, our assumption on q and the equality $\delta = \mathcal{L}_{d,m}^3$ implies the existence of a smooth $\Sigma \in |\mathcal{L}_{d,m}|$ defined over \mathbb{F}_q . The surface $w(\Sigma)$ is a solution of Theorem 1.

References

- [1] E. Ballico, An effective Bertini theorem over finite fields, Adv. Geom. 3 (2003), no. 4, 361–363.
- [2] W. Fulton, Intersection Theory, Springer, Berlin, 1984.
- [3] L. Gruson, R. Lazarsfeld and Ch. Peskine, On a theorem of Castelnuovo and the equations defining space curves, Invent. Math. 72 (1983), no. 3, 491–506.

Received: January 23, 2006