Intuitionistic Q-Fuzzy Subalgebras of BCK/BCI-Algebras

Eun Hwan Roh
Department of Mathematics Education
Chinju National University of Education
Jinju 660-756, Korea
ehroh@cue.ac.kr

Kyung Ho Kim and Jong Geol Lee
Department of Mathematics, Chungju National University
Chungju 380-702, Korea
ghkim@chungju.ac.kr

Abstract. The intuitionistic Q-fuzzification of the concept of subalgebras in BCK/BCI-algebra is considered, and some related properties are investigated.

Keywords: BCK/BCI-algebra, Q-fuzzy set, Intuitionistic Q-fuzzy set, intuitionistic Q-fuzzy subalgebra, preimage

Mathematics Subject Classification: 06F35, 03G25, 03E72

1. Introduction

The notion of BCK-algebras was proposed by Imai and Iséki in 1966. In the same year, Iséki [4] introduced the notion of a BCI-algebra which is a generalization of a BCK-algebra. After the introduction of the concept of fuzzy sets by Zadeh [6], several researches were conducted on the generalization of the notion of fuzzy sets. The idea of “intuitionistic fuzzy set” was first published by Atanassov [1, 2], as a generalization of the notion of fuzzy set. In this paper, using the Atanassov’s idea, we establish the intuitionistic Q-fuzzification of the concept of subalgebras in BCK/BCI-algebras, and investigate some of their properties.

2. Preliminaries

In this section we include some elementary aspects that are necessary for this paper.

Recall that a BCI-algebra is an algebra $(X, *, 0)$ of type $(2, 0)$ satisfying the following axioms:

(I) $((x*y)*(x*z))*(z*y) = 0$,
(II) $(x*(x*y))*y = 0$,
(III) $x*x = 0$, and
(IV) $x*y = 0$ and $y*x = 0$ imply $x = y$
for every \(x, y, z \in X \). A BCI-algebra \(X \) satisfying the condition

(V) \(0 \ast x = 0 \) for all \(x \in X \)

is called a BCK-algebra. In any BCK/BCI-algebra \(X \) one can define a partial order “\(\leq \)” by putting \(x \leq y \) if and only if \(x \ast y = 0 \).

A BCK/BCI-algebra \(X \) has the following properties:

\[
\begin{align*}
(2.1) & \ x \ast 0 = x, \\
(2.2) & \ (x \ast y) \ast z = (x \ast z) \ast y, \\
(2.3) & \ x \leq y \text{ implies that } x \ast z \leq y \ast z \text{ and } z \ast y \leq z \ast x, \\
(2.4) & \ (x \ast z) \ast (y \ast z) \leq x \ast y
\end{align*}
\]

for all \(x, y, z \in X \).

A non-empty subset \(S \) of a BCK/BCI-algebra \(X \) is called a subalgebra of \(X \) if \(x \ast y \in S \) whenever \(x, y \in S \). A mapping \(f : X \to Y \) of BCK/BCI-algebras is called a homomorphism if \(f(x \ast y) = f(x) \ast f(y) \) for all \(x, y \in X \). Let \(X \) be a BCK/BCI-algebra. A fuzzy set \(f \) in \(X \), i.e., a mapping \(f : X \to [0, 1] \), is called a fuzzy subalgebra of \(X \) if \(f(x \ast y) \geq f(x) \land f(y) \) for all \(x, y \in X \). Note that if \(f \) is a fuzzy subalgebra of a BCK/BCI-algebra \(X \), then \(f(0) \geq f(x) \) for all \(x \in X \).

3. Intuitionistic \(Q \)-fuzzy subalgebras

In what follows, let \(Q \) and \(X \) denote a set and a BCK/BCI-algebra, respectively, unless otherwise specified. A mapping \(H : X \times Q \to [0, 1] \) is called a \(Q \)-fuzzy set in \(X \).

A \(Q \)-fuzzy set \(H : X \times Q \to [0, 1] \) is called a fuzzy subalgebra of \(X \) over \(Q \) (briefly, \(Q \)-fuzzy subalgebra of \(X \)) if \(H(x \ast y, q) \geq H(x, q) \lor H(y, q) \) for all \(x, y \in X \) and \(q \in Q \).

Definition 3.1. Let \(Q \) and \(X \) denote a set and a BCK/BCI-algebra, respectively. An intuitionistic \(Q \)-fuzzy set (IQFS for short) \(A \) is an object having the form

\[
A = \{(x, \mu_A(x, q), \gamma_A(x, q)) : x \in X, q \in Q\}
\]

where the functions \(\mu_A : X \times Q \to [0, 1] \) and \(\gamma_A : X \times Q \to [0, 1] \) denote the degree of membership (namely \(\mu_A(x, q) \)) and the degree of nonmembership (namely \(\gamma_A(x, q) \)) of each element \((x, q) \in X \times Q\) to the set \(A \), respectively, and \(0 \leq \mu_A(x, q) + \gamma_A(x, q) \leq 1 \) for all \(x \in X \) and \(q \in Q \).

For the sake of simplicity, we shall use the symbol \(A = (\mu_A, \gamma_A) \) for the IQFS \(A = \{(x, \mu_A(x, q), \gamma_A(x, q)) : x \in X, q \in Q\} \).

Definition 3.2. An IQFS \(A = (\mu_A, \gamma_A) \) in \(X \) is called an intuitionistic \(Q \)-fuzzy subalgebra of \(X \) if

\[(IQF1) \ \mu_A(x \ast y, q) \geq \mu_A(x, q) \land \mu_A(y, q) \text{ and } \gamma_A(x \ast y, q) \leq \gamma_A(x, q) \lor \gamma_A(y, q) \]

for all \(x, y \in X \) and \(q \in Q \).
Example 3.3. Let $X = \{0, a, b, c\}$ be a BCK-algebra with the following Cayley table:

<table>
<thead>
<tr>
<th>*</th>
<th>0</th>
<th>a</th>
<th>b</th>
<th>c</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>a</td>
<td>a</td>
<td>0</td>
<td>0</td>
<td>a</td>
</tr>
<tr>
<td>b</td>
<td>b</td>
<td>a</td>
<td>0</td>
<td>b</td>
</tr>
<tr>
<td>c</td>
<td>c</td>
<td>c</td>
<td>c</td>
<td>0</td>
</tr>
</tbody>
</table>

Define an IQFS $= (\mu_A, \gamma_A)$ in X as follows: for every $q \in Q$,

$\mu_A(0, q) = \mu_A(b, q) = 0.6, \mu_A(a, q) = \mu_A(c, q) = 0.2$

and

$\gamma_A(0, q) = \gamma_A(b, q) = 0.3, \gamma_A(a, q) = \gamma_A(c, q) = 0.7$

It is easy to verify that $A = (\mu_A, \gamma_A)$ is an intuitionistic Q-fuzzy subalgebra of X.

Example 3.4. Consider a BCI-algebra $X = \{0, x\}$ with Cayley table as follows (Iséki [2]):

<table>
<thead>
<tr>
<th>*</th>
<th>0</th>
<th>x</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>x</td>
</tr>
<tr>
<td>x</td>
<td>x</td>
<td>0</td>
</tr>
</tbody>
</table>

Let $Q = \{1, 2\}$ and let $A = (\mu_A, \gamma_A)$ be an intuitionistic Q-fuzzy set in X defined by

$\mu_A(0, 1) = \mu_A(0, 2) = 1, \mu_A(x, 1) = 0.8, \mu_A(x, 2) = 0.5$

and

$\gamma_A(0, 1) = \gamma_A(0, 2) = 0, \gamma_A(x, 1) = 0.1, \gamma_A(x, 2) = 0.2$

It is easy to verify that $A = (\mu_A, \gamma_A)$ is an intuitionistic Q-fuzzy subalgebra of X.

Proposition 3.5. If $A = (\mu_A, \gamma_A)$ in X is an intuitionistic fuzzy Q-subalgebra of X, then $\mu_A(0, q) \geq \mu_A(x, q)$ and $\gamma_A(0, q) \leq \gamma_A(x, q)$ for all $x \in X$ and $q \in Q$.

Proof. Let $x \in X$ and $q \in Q$. Then $\mu_A(0, q) = \mu_A(x \ast x, q) \geq \mu_A(x, q)$ and $\gamma_A(0, q) = \gamma_A(x \ast x, q) \leq \gamma_A(x, q)$.

Proposition 3.6. Let $A = (\mu_A, \gamma_A)$ be an intuitionistic Q-fuzzy subalgebra of X. Define an intuitionistic Q-fuzzy set $B = (\mu_B, \gamma_B)$ in X by

$\mu_B(x, q) = \frac{\mu_A(x, q)}{\mu_A(0, q)}, \gamma_B(x, q) = \frac{\gamma_A(x, q)}{\gamma_A(0, q)}$

for all $x \in X$ and $q \in Q$. Then $B = (\mu_B, \gamma_B)$ is an intuitionistic Q-fuzzy subalgebra of X.

Thus
\[\mu_B(x \ast y, q) = \frac{\mu_A(x \ast y, q)}{\mu_A(0, q)} \geq \frac{1}{\mu_A(0, q)} \{ \mu_A(x, q) \land \mu_A(y, q) \} \]
\[= \{ \mu_A(x, q) \land \mu_A(y, q) \} = \mu_B(x, q) \land \mu_B(y, q) \]
and
\[\gamma_B(x \ast y, q) = \frac{\gamma_A(x \ast y, q)}{\gamma_A(0, q)} \leq \frac{1}{\gamma_A(0, q)} \{ \gamma_A(x, q) \lor \gamma_A(y, q) \} \]
\[= \{ \gamma_A(x, q) \lor \gamma_A(y, q) \} = \gamma_B(x, q) \lor \gamma_B(y, q). \]
Hence \(B = (\mu_B, \gamma_B) \) is an intuitionistic \(Q \)-fuzzy subalgebra of \(X \). \hfill \Box

Let \(A = (\mu_A, \gamma_A) \) be an IQFS in a set \(X \) and let \(\alpha, \beta \in [0, 1] \) be such that \(\alpha + \beta \leq 1 \). Then we define the set
\[X_A^{(\alpha, \beta)} = \{ x \in X \mid \mu_A(x, q) \geq \alpha, \gamma_A(x, q) \leq \beta, q \in Q \}. \]

Theorem 3.7. Let \(A = (\mu_A, \gamma_A) \) be an intuitionistic \(Q \)-fuzzy subalgebra of \(X \). Then \(X_A^{(\alpha, \beta)} \) is a subalgebra of \(X \) for every \((\alpha, \beta) \in \text{Im}(\mu_A) \times \text{Im}(\gamma_A) \) with \(\alpha + \beta \leq 1 \).

Proof. Let \(x, y \in X_A^{(\alpha, \beta)} \) and \(q \in Q \). Then \(\mu_A(x, q) \geq \alpha, \gamma_A(x, q) \leq \beta, \mu_A(y, q) \geq \alpha, \gamma_A(y, q) \leq \beta \) which imply that
\[\mu_A(x \ast y, q) \geq \mu_A(x, q) \land \mu_A(y, q) \geq \alpha \]
\[\gamma_A(x \ast y, q) \leq \gamma_A(x, q) \lor \gamma_A(y, q) \leq \beta. \]
Thus \(xy \in X_A^{(\alpha, \beta)} \). Therefore \(X_A^{(\alpha, \beta)} \) is a subalgebra of \(X \). \hfill \Box

For the convenience of notation, we denote
\[(\ldots ((x \ast y_1) \ast y_2) \ast \ldots) \ast y_n = x \ast \prod_{i=1}^{n} y_i, \text{ and} \]
\[y_n \ast (y_{n-1} \ast (\cdots \ast (y_1 \ast x) \cdots)) = x \ast \prod_{i=1}^{n} y_i. \]

Proposition 3.8. Let \(A = (\mu_A, \gamma_A) \) be an intuitionistic \(Q \)-fuzzy subalgebra of a BCK-algebra \(X \) and let \(x_1, x_2, \ldots, x_n \) be arbitrary elements of \(X \). If there exists \(k \in \{1, 2, \ldots, n\} \) such that \(x_k = x_1 \), then \(\mu_A(x_1 \ast \prod_{i=2}^{n} x_i, q) \geq \mu_A(x, q) \) and \(\gamma_A(x_1 \ast \prod_{i=2}^{n} x_i, q) \leq \gamma_A(x, q) \) for all \(x \in X \) and \(q \in Q \).

Proof. Let \(k \) be a fixed number in \(\{1, 2, \ldots, n\} \) such that \(x_k = x_1 \). Using (III), (V) and (2.2), one can deduce
\[\mu_A(x_1 \ast \prod_{i=2}^{n} x_i, q) = \mu_A(0, q) \text{ and } \gamma_A(x_1 \ast \prod_{i=2}^{n} x_i, q) = \gamma_A(0, q). \]
It follows from Proposition 3.5 that
\[\mu_{\Lambda}(x_1 \ast \prod_{i=2}^{n} x_i, q) \geq \mu_{\Lambda}(x, q) \] and \[\gamma_{\Lambda}(x_1 \ast \prod_{i=2}^{n} x_i, q) \leq \gamma_{\Lambda}(x, q) \]
for all \(x \in X \) and \(q \in Q \).

Proposition 3.9. Let \(A = (\mu_{\Lambda}, \gamma_{\Lambda}) \) be an intuitionistic Q-fuzzy subalgebra of a BCK-algebra \(X \). Then

(i) \(\mu_{\Lambda}(x_1 \ast \prod_{i=1}^{2k} x_i, q) \geq \mu_{\Lambda}(x, q) \) and \(\gamma_{\Lambda}(x_1 \ast \prod_{i=1}^{2k} x_i, q) \leq \gamma_{\Lambda}(x, q) \) for all \(x \in X, q \in Q \) and for \(k = 1, 2, \cdots \).

(ii) \(\mu_{\Lambda}(x_1 \ast \prod_{i=1}^{n} x_i, q) \geq \mu_{\Lambda}(x, q) \) and \(\gamma_{\Lambda}(x_1 \ast \prod_{i=1}^{n} x_i, q) \leq \gamma_{\Lambda}(x, q) \) for all \(x \in X, q \in Q \) and for \(n = 1, 2, \cdots \).

Proof. It follows immediately from (III), (2.1) and Proposition 3.5.

Theorem 3.10. If \(\{A_i : i \in A\} \) is an arbitrary family of intuitionistic Q-fuzzy subalgebras of \(X \), then \(\bigcap A_i \) is an intuitionistic Q-fuzzy subalgebra of \(X \) where \(\bigcap A_i = \{(x, \wedge_{\Lambda_i}(x, q), \vee_{\Lambda_i}(x, q)) : x \in X, q \in Q\} \).

Proof. Let \(x, y \in X, q \in Q \). Then
\[\wedge_{\Lambda_i}(x \ast y, q) \geq \wedge(\mu_{\Lambda_i}(x, q) \wedge \mu_{\Lambda_i}(y, q)) = (\wedge_{\Lambda_i}(x, q)) \wedge (\wedge_{\Lambda_i}(y, q)) \] and
\[\vee_{\Lambda_i}(x \ast y, q) \leq \vee(\gamma_{\Lambda_i}(x, q) \vee \gamma_{\Lambda_i}(y, q)) = (\vee_{\Lambda_i}(x, q)) \vee (\vee_{\Lambda_i}(y, q)). \]

Hence \(\bigcap A_i = (\wedge_{\Lambda_i}, \vee_{\Lambda_i}) \) is an intuitionistic Q-fuzzy subalgebra of \(X \).

Theorem 3.11. If an IQFS \(A = (\mu_{\Lambda}, \gamma_{\Lambda}) \) in \(X \) is an intuitionistic Q-fuzzy subalgebra of \(X \), then so is \(\square A \), where \(\square A = \{(x, q, \mu_{\Lambda}(x, q), 1 - \mu_{\Lambda}(x, q)) : x \in X, q \in Q\} \).

Proof. It is sufficient to show that \(\mu_{\Lambda} \) satisfies the second condition in (IQF1). Let \(x, y \in X \) and \(q \in Q \). Then
\[\mu_{\Lambda}(x \ast y, q) = 1 - \mu_{\Lambda}(x, q) \leq 1 - (\mu_{\Lambda}(x, q) \wedge \mu_{\Lambda}(y, q)) \]
\[= (1 - \mu_{\Lambda}(x, q)) \vee (1 - \mu_{\Lambda}(y, q)) \]
\[= \mu_{\Lambda}(x, q) \vee \mu_{\Lambda}(y, q). \]

Hence \(\square A \) is an intuitionistic Q-fuzzy subalgebra of \(X \).

Theorem 3.12. If an IQFS \(A = (\mu_{\Lambda}, \gamma_{\Lambda}) \) in \(X \) is an intuitionistic Q-fuzzy subalgebra of \(X \), then the sets
\[X_\mu := \{x \in X : \mu_{\Lambda}(x, q) = \mu_{\Lambda}(0, q)\} \]
and
\[X_\gamma := \{ x \in X : \gamma_A(x, q) = \gamma_A(0, q) \} \]
are subalgebras of \(X \) for all \(q \in Q \).

Proof. Let \(x, y \in X_\mu \) and \(q \in Q \). Then \(\mu_A(x, q) = \mu_A(0, q) = \mu_A(y, q) \), and so
\[
\mu_A(x * y, q) \geq \mu_A(x, q) \land \mu_A(y, q) = \mu_A(0, q).
\]
By using Proposition 3.5, we know that \(\mu_A(x * y, q) = \mu_A(0, q) \) or equivalently \(x * y \in X_\mu \). Now let \(x, y \in X_\gamma \). Then
\[
\gamma_A(x * y, q) \leq \gamma_A(x, q) \lor \gamma_A(y, q) = \gamma_A(0, q),
\]
and by applying Proposition 3.5, we conclude that \(\gamma_A(x * y, q) = \gamma_A(0, q) \) and hence \(x * y \in X_\gamma \). □

Definition 3.13. Let \(A = (\mu_A, \gamma_A) \) be an IQFS in \(X \) and let \(\alpha \in [0, 1] \). Then the set \(\mu_{A, \alpha}^\geq := \{ x \in X : \mu_A(x, q) \geq \alpha, q \in Q \} \) is called a \(\mu \)-level \(\alpha \)-cut and \(\gamma_{A, \alpha}^\leq := \{ x \in X : \gamma_A(x, q) \leq \alpha, q \in Q \} \) is called a \(\gamma \)-level \(\alpha \)-cut of \(A \).

Theorem 3.14. If an IQFS \(A = (\mu_A, \gamma_A) \) in \(X \) is an intuitionistic \(Q \)-fuzzy subalgebra of \(X \), then the \(\mu \)-level \(\alpha \)-cut and \(\gamma \)-level \(\alpha \)-cut of \(A \) are subalgebras of \(X \) for every \(\alpha \in [0, 1] \) such that \(\alpha \in \text{Im}(\mu_A) \cap \text{Im}(\gamma_A) \), which are called a \(\mu \)-level subalgebra and a \(\gamma \)-level subalgebra respectively.

Proof. Let \(x, y \in \mu_{A, \alpha}^\geq \) and \(q \in Q \). Then \(\mu_A(x, q) \geq \alpha \) and \(\mu_A(y, q) \geq \alpha \). It follows that \(\mu_A(x * y, q) \geq \mu_A(x, q) \land \mu_A(y, q) \geq \alpha \) so that \(x * y \in \mu_{A, \alpha}^\geq \). Hence \(\mu_{A, \alpha}^\geq \) is a subalgebra of \(X \). Now let \(x, y \in \gamma_{A, \alpha}^\leq \). Then \(\gamma_A(x * y, q) \leq \gamma_A(x, q) \lor \gamma_A(y, q) \leq \alpha \) and so \(x * y \in \gamma_{A, \alpha}^\leq \). Therefore \(\gamma_{A, \alpha}^\leq \) is a subalgebra of \(X \). □

Theorem 3.15. Let \(A = (\mu_A, \gamma_A) \) be an IQFS in \(X \) such that the sets \(\mu_{A, \alpha}^\geq \) and \(\gamma_{A, \alpha}^\leq \) are subalgebras of \(X \). Then \(A = (\mu_A, \gamma_A) \) is an intuitionistic \(Q \)-fuzzy subalgebra of \(X \).

Proof. We need to show that \(A = (\mu_A, \gamma_A) \) satisfies the condition (IQF1). If the first condition of (IQF1) is not true, then there exist \(x_0, y_0 \in X \) such that \(\mu_A(x_0 * y_0, q) < \mu_A(x_0, q) \land \mu_A(y_0, q) \) for all \(q \in Q \). Let
\[
\alpha_0 := \frac{1}{2} (\mu_A(x_0 * y_0, q) + (\mu_A(x_0, q) \land \mu_A(y_0, q)))
\]
Then \(\mu_A(x_0 * y_0, q) < \alpha_0 < \mu_A(x_0, q) \land \mu_A(y_0, q) \), and so \(x_0 * y_0 \notin \mu_{A, \alpha_0}^\geq \), but \(x_0, y_0 \in \mu_{A, \alpha_0}^\geq \). This leads to a contradiction. Now assume that the second condition of (IQF1) does not hold. Then \(\gamma_A(x_0 * y_0, q) > \gamma_A(x_0, q) \lor \gamma_A(y_0, q) \) for some \(x_0, y_0 \in X \) and \(q \in Q \). Taking
\[
\beta_0 := \frac{1}{2} (\gamma_A(x_0 * y_0, q) + (\gamma_A(x_0, q) \lor \gamma_A(y_0, q)))
\]
then \(\gamma_A(x_0, q) \lor \gamma_A(y_0, q) < \beta_0 < \gamma_A(x_0 * y_0, q) \). It follows that \(x_0, y_0 \notin \gamma_{A, \alpha_0}^\leq \) and \(x_0 * y_0 \notin \gamma_{A, \alpha_0}^\leq \). This leads to a contradiction. This completes the proof. □
Theorem 3.16. Any subalgebra of \(X \) can be realized as both a \(\mu \)-level subalgebra and a \(\gamma \)-level subalgebra of some intuitionistic \(Q \)-fuzzy subalgebra of \(X \).

Proof. Let \(S \) be a subalgebra of \(X \) and let \(\mu_A \) and \(\gamma_A \) be \(Q \)-fuzzy sets in \(X \) defined by

\[
\mu_A(x, q) := \begin{cases}
\alpha, & \text{if } x \in S, \\
0, & \text{otherwise},
\end{cases} \quad \text{and} \quad \gamma_A(x, q) := \begin{cases}
\beta, & \text{if } x \in S, \\
1, & \text{otherwise},
\end{cases}
\]

for all \(x \in X \) and \(q \in Q \) where \(\alpha \) and \(\beta \) are fixed numbers in \((0, 1)\) such that \(\alpha + \beta < 1 \). Let \(x, y \in X \) for all \(q \in Q \). If \(x, y \in S \), then \(x \cdot y \in S \). Hence \(\mu_A(x \cdot y, q) = \mu_A(x, q) \land \mu_A(y, q) \) and \(\gamma_A(x \cdot y, q) = \gamma_A(x, q) \lor \gamma_A(y, q) \). If at least one of \(x \) and \(y \) does not belong to \(S \), then at least one of \(\mu_A(x, q) \) and \(\mu_A(y, q) \) is equal to 0, and at least one of \(\gamma_A(x, q) \) and \(\gamma_A(y, q) \) is equal to 1. It follows that \(\mu_A(x \cdot y, q) \geq 0 = \mu_A(x, q) \land \mu_A(y, q) \) and \(\gamma_A(x \cdot y, q) \leq 1 = \gamma_A(x, q) \lor \gamma_A(y, q) \). Hence \(A = (\mu_A, \gamma_A) \) is an intuitionistic \(Q \)-fuzzy subalgebra of \(X \). Obviously, \(\mu_{A,\alpha}^\geq = S = \gamma_{A,\beta}^\leq \). This completes the proof. \(\square \)

Definition 3.17. Let \(f \) be a map from a set \(X \) to a set \(Y \). If \(A = (\mu_A, \gamma_A) \) and \(B = (\mu_B, \gamma_B) \) are IQFSs in \(X \) and \(Y \) respectively, then the preimage of \(B \) under \(f \), denoted by \(f^{-1}(B) \), is an IQFS in \(X \) defined by

\[
f^{-1}(B) = (f^{-1}(\mu_B), f^{-1}(\gamma_B)),
\]

and the image of \(A \) under \(f \), denoted by \(f(A) \), is an IQFS of \(Y \) defined by

\[
f(A) = (f_{\sup}(\mu_A), f_{\inf}(\gamma_A)),
\]

where

\[
f_{\sup}(\mu_A)(y, q) = \begin{cases}
\sup_{x \in f^{-1}(y)} \mu_A(x, q), & \text{if } f^{-1}(y, q) \neq \emptyset, \\
0, & \text{otherwise},
\end{cases}
\]

and

\[
f_{\inf}(\gamma_A)(y, q) = \begin{cases}
\inf_{x \in f^{-1}(y)} \gamma_A(x, q), & \text{if } f^{-1}(y, q) \neq \emptyset, \\
1, & \text{otherwise},
\end{cases}
\]

for each \(y \in Y \) and \(q \in Q \).

Theorem 3.18. Let \(f : X \to Y \) be a homomorphism of \(BCK/BCI \)-algebras. If \(B = (\mu_B, \gamma_B) \) is an intuitionistic \(Q \)-fuzzy subalgebra of \(Y \), then the preimage \(f^{-1}(B) = (f^{-1}(\mu_B), f^{-1}(\gamma_B)) \) of \(B \) under \(f \) is an intuitionistic \(Q \)-fuzzy subalgebra of \(X \).

Proof. Assume that \(B = (\mu_B, \gamma_B) \) is an intuitionistic \(Q \)-fuzzy subalgebra of \(Y \) and let \(x_1, x_2 \in X \) and \(q \in Q \). Then

\[
f^{-1}(\mu_B)(x_1 \cdot x_2, q) = \mu_B(f(x_1 \cdot x_2), q) = \mu_B(f(x_1) \cdot f(x_2), q) \\
\geq \mu_B(f(x_1), q) \land \mu_B(f(x_2), q) \\
= f^{-1}(\mu_B)(x_1, q) \land f^{-1}(\mu_B)(x_2, q)
\]
Proof. Let f be an intuitionistic fuzzy subalgebra of X. We have

$$f^{-1}(\gamma_B)(x_1 \ast x_2, q) = \gamma_B(f(x_1 \ast x_2), q) = \gamma_B(f(x_1) \ast f(x_2), q)$$

$$\leq \gamma_B(f(x_1), q) \lor \gamma_B(f(x_2), q)$$

$$= f^{-1}(\gamma_B)(x_1, q) \lor f^{-1}(\gamma_B)(x_2, q).$$

Therefore $f^{-1}(B) = (f^{-1}(\mu_B), f^{-1}(\gamma_B))$ is an intuitionistic Q-fuzzy subalgebra of X.

Theorem 3.19. Let $f : X \to Y$ be a homomorphism from a BCK/BCI-algebra X onto a BCK/BCI-algebra Y. If $A = (\mu_A, \gamma_A)$ is an intuitionistic Q-fuzzy subalgebra of X, then the image $f(A) = (f_{\sup}(\mu_A), f_{\inf}(\gamma_A))$ of A under f is an intuitionistic Q-fuzzy subalgebra of Y.

Proof. Let $A = (\mu_A, \gamma_A)$ be an intuitionistic Q-fuzzy subalgebra of X and let $y_1, y_2 \in Y$ and $q \in Q$. Noticing that

$$\{(x_1 \ast x_2, q) | (x_1, q) \in f^{-1}(y_1, q) \text{ and } (x_2, q) \in f^{-1}(y_2, q)\}$$

$$\subseteq \{(x, q) \in X \times Q | (x, q) \in f^{-1}(y_1 \ast y_2, q)\},$$

we have

$$f_{\sup}(\mu_A)(y_1 \ast y_2, q)$$

$$= \sup \{\mu_A(x, q) | (x, q) \in f^{-1}(y_1 \ast y_2, q)\}$$

$$\geq \sup \{\mu_A(x_1 \ast x_2, q) | (x_1, q) \in f^{-1}(y_1, q) \text{ and } (x_2, q) \in f^{-1}(y_2, q)\}$$

$$\geq \sup \{\mu_A(x_1, q) \land \mu_A(x_2, q) | (x_1, q) \in f^{-1}(y_1, q) \text{ and } (x_2, q) \in f^{-1}(y_2, q)\}$$

$$= \sup \{\mu_A(x_1, q) | (x_1, q) \in f^{-1}(y_1, q)\} \land \sup \{\mu_A(x_2, q) | (x_2, q) \in f^{-1}(y_2, q)\}$$

and

$$f_{\inf}(\gamma_A)(y_1 \ast y_2, q)$$

$$= \inf \{\gamma_A(x, q) | (x, q) \in f^{-1}(y_1 \ast y_2, q)\}$$

$$\leq \inf \{\gamma_A(x_1 \ast x_2, q) | (x_1, q) \in f^{-1}(y_1, q) \text{ and } (x_2, q) \in f^{-1}(y_2, q)\}$$

$$\leq \inf \{\gamma_A(x_1, q) \lor \gamma_A(x_2, q) | (x_1, q) \in f^{-1}(y_1, q) \text{ and } (x_2, q) \in f^{-1}(y_2, q)\}$$

$$= \inf \{\gamma_A(x_1, q) | (x_1, q) \in f^{-1}(y_1, q)\} \lor \inf \{\gamma_A(x_2, q) | (x_2, q) \in f^{-1}(y_2, q)\}$$

Hence $f(A) = (f_{\sup}(\mu_A), f_{\inf}(\gamma_A))$ is an intuitionistic Q-fuzzy subalgebra of Y.

References

