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Abstract. In this paper, a TSK-type quantum neural fuzzy network (TQNFN) for
temperature control is proposed. The TQNFN model is a five-layer structure, which
combines the traditional Takagi-Sugeno-Kang (TSK). Layer 2 of the TQNFN model
contains quantum membership functions, which are multilevel activation functions.
Each quantum membership function is composed of the sum of sigmoid functions
shifted by quantum intervals. A self-constructing learning algorithm, which consists
of the self-clustering algorithm (SCA) and the backpropagation algorithm, is also
proposed. The proposed the SCA method is a fast, one-pass algorithm for a dynamic
estimation of the number of clusters in an input data space. The backpropagation
algorithm is used to tune the adjustable parameters. Simulation results have been
given to illustrate the performance and effectiveness of the proposed model.
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1 Introduction

The concept of fuzzy logic and artificial neural network for control problem has
been grown into a popular research topic in recent years [1]-[3]. The reason is
that the classical control theory usually requires a mathematical model for de-
signing the controller. The inaccuracy of mathematical modeling of the plants
usually degrades the performance of the controller, especially for nonlinear
and complex control problems [4]. On the contrary, the fuzzy logic controller
(FLC’s) and the artificial neural network controller, they offer a key advantage
over traditional adaptive control systems. That is, they do not require mathe-
matical models of the plants. The traditional neural networks can learn from
data and feedback, but the meaning associated with each neuron and each
weight in the network is not easily understood. Alternatively, the fuzzy logical
models are easy to appreciate, because it uses linguistic terms and the struc-
ture of if-then rules. However, as compared with the neural networks, learning
ability is lack of fuzzy logic. In contrast to the pure neural network or fuzzy
system, the neural fuzzy network representations have emerged as a powerful
approach to the solution of many problems [5]-[9].

Recently, quantum neural networks (QNNs) for the limitations of conven-
tional neural networks (NNs) were developed [10]-[12]. Conventional NNs and
QNNs satisfy the requirements outlined in [13] for a universal function ap-
proximator. More specifically, QNNs can identify overlaps between data due
to their ability to approximate any arbitrary membership profile up to any
degree of accuracy. However, QNNs and NNs are generally disadvantaged by
their ”black box” format, lack a systematic way to determine the appropriate
model structure, have no localizability, and converge slowly.

In this paper, a TSK-type quantum neural fuzzy network (TQNFN) is
proposed. The TQNFN model is a five-layer structure, which combines the
traditional Takagi-Sugeno-Kang (TSK). Layer 2 of the TQNFN model con-
tains quantum membership functions, which are multilevel activation func-
tions. Each quantum membership function is composed of the sum of sigmoid
functions shifted by quantum intervals. The quantum intervals add an addi-
tional degree of freedom that can be exploited during the learning process to
capture and quantify the structure of the input space.

A self-constructing learning algorithm for the TQNFN is proposed, as fol-
lows. First, a structure learning scheme is used to determine proper input space
partitioning and to find the mean of each cluster. Second, a supervised learn-
ing scheme is used to adjust the parameters to obtain the desired outputs.
The proposed learning algorithm uses the self-clustering algorithm (SCA) to
perform structure learning and the backpropagation algorithm to perform pa-
rameter learning. We evaluate the performance of the proposed TQNFN model
using series simulations of a water bath temperature control system.
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2 The Structure of the TSK-Type Quantum Neural

Fuzzy Network

The fuzzy if-then rule shown below is used by the TQNFN:

Rj : IF x1 is Q1j · · · and xn is Qnj , THEN y is a0j +
n∑

i=1

aijxi (1)

where xi and y are the input and output variables, respectively; Qij is the
linguistic term of the precondition part with quantum membership function
µQ; a0j and aij are the parameters of consequent part; n is the number of input
dimensions; Rj is jth fuzzy rule.

The membership function of the precondition part discussed in this paper is
different from the typical Gaussian membership function [9]-[13]. We adopt the
quantum membership function to approximate desired results. Therefore, the
response of the jth quantum membership function for the ith feature vector
can be written as

Qij =
1

ns

ns∑
r=1

[(
1

1 + exp(−β(xi − mij + |θr
j |))

)U(xi;−∞, mij)

+(
exp(−β(xi − mij + |θr

j |))
1 + exp(−β(xi − mij + |θr

j |))
)U(xi; mij ,∞)] (2)

where β is the slope factor, θr
j is the jump positions, mij is the center of the

quantum membership function, and ns is the number of levels in the quantum
membership function. Figure 1 shows the response of a three-level quantum
membership function.

The structure of the TSK-type quantum neural fuzzy network (TQNFN),
which is systematized into n input variables, p-term nodes for each input vari-
able, one output node, and np membership function nodes, is shown in Figure
2. We shall introduce the operation functions of the nodes in each layer of the
TQNFN model. In the following description, u(l) denotes an output of a node
in the lth layer.

Layer1(InputNode): No computation is done in this layer. Each node in
this layer is an input node, which corresponds to one input variable and which
only transmits input values to the next layer directly.

u
(1)
i = xi (3)

Layer2(MembershipFunctionNode): Nodes in this layer correspond to one
linguistic label of the input variables in layer1 and a unit of memory, i.e., the
membership value specified the degree to which an input value and a unit of
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memory belongs a fuzzy set is calculated in layer 2. The quantum membership
function, the operation performed in layer 2 is

u
(2)
ij =

1

ns

ns∑
r=1

[(
1

1 + exp(−β(u
(1)
i − mij + |θr

j |))
)U(u

(1)
i ;−∞, mij)

+(
exp(−β(u

(1)
i − mij + |θr

j |))
1 + exp(−β(u

(1)
i − mij + |θr

j |))
)U(xi; mij ,∞)] (4)

where β is the slope factor, θr
j is the jump positions, mij is the center of the

quantum membership function, and ns is the number of levels in the quantum
membership function.

Layer3(RuleNode): Nodes in this layer represent the preconditioned part
of one fuzzy logic rule. They receive one-dimensional membership degrees of
the associated rule from nodes of a set in layer 2. Here, we use a product
operator mentioned above to perform IF-condition matching of fuzzy rules. As
a result, the output function of each inference node is

u
(3)
j = [

∏
i

u
(2)
ij ] (5)

where the
∏

i u
(2)
ij of a rule node represents the firing strength of its correspond-

ing rule.

Layer4(ConsequentNode): Nodes in this layer are called the consequent
nodes. The input to a node of layer 4 is the output delivered from layer 3, and
the other inputs are the input variables from layer 1 as depicted in Figure 2.
For this kind of node, we have

u
(4)
j = u

(3)
j (a0j +

n∑
i=1

aijxi) (6)

where the summation is over all the inputs and aij are the corresponding
parameter of consequent part.

Layer5(OutputNode): Each node in this layer corresponds to one output
variable. The node integrates all the actions recommended by layers 3 and 4
and acts as a defuzzifier with

y = u(5) =

∑p
j=1 u

(3)
j (a0j +

∑n
i=1 aijxi)

∑p
j=1 u

(3)
j

(7)

where p is the number of fuzzy rule.
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3 A Learning Algorithm for the TQNFN Model

In this section, we present a learning algorithm for the proposed TQNFN
model. The following two schemes are part of this learning algorithm. First, a
structure learning scheme is used to determine proper input space partitioning
and to find the mean of each cluster. Second, a supervised learning scheme
is used to adjust the parameters for the desired outputs. The proposed learn-
ing algorithm uses the self-clustering algorithm (SCA) to perform structure
learning and the backpropagation algorithm to perform parameter learning.

3.1 The Self-Clustering Algorithm

Layer 2 of the TQNFN model can be viewed as a function that maps input
patterns. Hence, the discriminative ability of these new features is determined
by the centers of the quantum membership function. To achieve good classi-
fication, centers are best selected based on their ability to provide large class
separation.

A clustering method, called the self-clustering algorithm (SCA) [14], is
proposed to implement scatter partitioning of the input space. Without any
optimization, the online SCA is a fast, one-pass algorithm for a dynamic esti-
mation of the number of clusters in a set of data and for finding the current
centers of clusters in the input data space. It is a distance-based connection-
clustering algorithm. In any cluster, the maximum distance between a sample
point and the cluster center is less than a threshold value which has been set
as a clustering parameter and which would affect the number of clusters to be
estimated. The details of this step will be discussed in [14].

3.2 The Parameter Learning Algorithm

After the network structure is determined by the self-clustering algorithm, the
network then enters the parameter learning phase to adjust the parameters
of the network based on the training patterns. The learning process involves
minimizing a given cost function. The gradient of the cost function is computed
and adjusted along the negative gradient. The backpagation algorithm is used
for this supervised learning method. When we consider the single output case
for clarity, our goal to minimize the cost function E is defined as

E =
1

2
[y − yd]2 (8)

where yd is the desired output and y is the current output. Then the parameter
learning algorithm based on backpropagation is described as follows: The error
term to be propagated is calculated as

δe = −∂E

∂y
= yd − y (9)
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The parameter of consequent part is updated by the amount

∆a0j = − ∂E

∂a0j
= [− ∂E

∂u(5)
][
∂u(5)

∂u
(4)
j

][
∂u

(4)
j

∂a0j
] =

δeu
(3)
j∑p

j=1 u
(3)
j

(10)

and

∆aij = − ∂E

∂aij

= [− ∂E

∂u(5)
][
∂u(5)

∂u
(4)
j

][
∂u

(4)
j

∂aij

] =
δeu

(3)
j xi

∑p
j=1 u

(3)
j

(11)

The parameter of consequent part in the output layer is updated according to
the following equation:

a0j(t + 1) = a0j(t) + ηa∆a0j (12)

aij(t + 1) = aij(t) + ηa∆aij (13)

where factor ηa is the learning rate parameter of the parameter and t denotes
the jth iteration number . The output error (i.e., the difference between the
desired output and the current output) is then backpropagated to the quantum
function neurons of the hidden layer to update their centers and jump positions.
According to the chain rule, the updated center is as follows:

∆mij = − ∂E

∂mij

= [− ∂E

∂u(5)
][
∂u(5)

∂mij

] (14)

The updated jump position is as follows:

∆θr
j = − ∂E

∂mij

= [− ∂E

∂u(5)
][
∂u(5)

∂θr
j

] (15)

The centers and jump positions of the quantum function neurons in this layer
are updated as follows:

mij(t + 1) = mij(t) + ηm∆mij (16)

θr
j (t + 1) = θr

j (t) + ηa∆θr
j (17)

where ηm and ηθ are the learning rate parameters of the center and the jump
positions of the quantum function neurons, respectively.
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4 Control of Water Bath Temperature System

The goal of this section is to control the temperature of a water bath system
given by

dy(t)

dt
=

u(k)

C
+

Y0 − y(k)

RC
(18)

where y(k) is system output temperature in Ċ; u(k) is heating flowing inward
the system; Y0 is room temperature; C is the equivalent system thermal ca-
pacity; and R is the equivalent thermal resistance between the system borders
and surroundings.

Assuming that R and C are essentially constant, we rewrite the system
in Equation (19) into discrete-time form with some reasonable approximation.
The system

y(k + 1) = eαTsy(k) +
δ
α
(1 − eαTs)

1 + e0.5y(k)−40
u(k) + (1 − eαTs)y0 (19)

is obtained, where α and δ are some constant values describing R and C. The
system parameters used in this example are α=1.0015e−4 , δ=8.67973e−3 and
Y0=25.0(Ċ), which were obtained from a real water bath plant in [3]. The in-
put u(k) is limited to 0 and 5V represent voltage unit. The sampling period
is Ts=30. The system configuration is shown in Figure 3, where yref is the de-
sired temperature of the controlled plant. The control approach in this paper
is different from [15]-[16]. Chen and Pao [15] compute the derivative of the
model’s output with respect to its input by means of the backpropagation pro-
cess, which evaluates the transpose of the network Jacobian at the network’s
current input vector. This usually implies that we need a model for the plant
and the Jacobian matrix obtained from the model, which could be a neural
network, a neuro-fuzzy system, or another appropriate mathematical descrip-
tion of the plant. As a result, propagating errors between actual and desired
plant outputs back through the forward model produces error in the control
signal, which can be used to train another network to be a controller [16].

By implement the on-line training scheme for TQNFN, a sequence of ran-
dom input signals urd(k) limited to 0 and 5V is injected directly into the
simulated system described in Equation (20). The 120 training patterns are
chosen from the input-outputs characteristic in order to cover the entire refer-
ence output. The initial temperature of the water is 25Ċ, and the temperature
rises progressively when random input signals are injected. For the TQNFN,
the initial parameters were set to ηa=ηm=ηθ=0.3, and the prespecified thresh-
old Dthr=0.6 is used. After 10000 training iterations, there are 3 fuzzy rules
generated.

In this paper, we compare the TQNFN controller to the PID controller [17],
the manually designed fuzzy controller and the self-constructing fuzzy neural
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network (SCFNN) [8]. Each of the three controllers is applied to the water bath
temperature control system. The comparison performance measures include
set-points regulation, the influence of impulse noise, and a large parameter
variation in the system.

For the PID control, a velocity-form discrete PID controller [17] is used
and is described by

∆u(k) = Kp[e(k) − e(k − 1)]KIe(k)KD[e(k) − 2e(k − 1) + e(k − 2)] (20)

where Kp=K-KI

2
, KI=

KTs

Ti
, and KD=KTd

Ts
. The parameter ∆u(k) is the incre-

ment of the control input, e(k) is the performance error at the sampling instant
t, and, KP , KI and KD are the proportional, integral, and derivative parame-
ters, respectively. In order not to aggravate noise in the plant, only a two-term
PID controller is used, i.e., KD is set to zero in the water bath system. The
other two parameters KP and KI are chosen as 80 and 70, respectively. For
the above designed PID controller, we have tried our best to achieve their
respective best performance through several trial-and-error experiments.

For the manually designed fuzzy controller, the input variables are chosen
as e(t) and ce(t), where e(t) is the performance error indicating the error
between the desired water temperature and the actual measured temperature
and ce(t) is the rate of change in the performance error e(t). The output or
the controlled linguistic variable is the voltage signal u(t) to the heater. Seven
fuzzy terms are defined for each linguistic variable. These fuzzy terms consist
of Negative Large (NL), Negative Medium (NM), Negative Small (NS), Zero
(ZE), Positive Small (PS), Positive Medium (PM), and Positive Large (PL).
Each fuzzy term is specified by a Gaussian membership function. According to
common sense and engineering judgment, 25 fuzzy rules are specified in Table
1. Like other controllers, a fuzzy controller has some scaling parameters to be
specified. They are GE, GCE, and GU , corresponding to the process error,
the change in error, and the controller’s output, respectively. We choose these
parameters as follows: GE=1/15, GCE=1/15, GU=450.

Recently, Lin et al. [8] presented a self-constructing fuzzy neural network
(SCFNN) for control problems. The SCFNN controller is a standard four-
layer structure. Each node in layer 3 performs the product operation. The
consequence of each fuzzy rule is a singleton value. The output node sums
all incoming signals to obtain inferred result. An on-line learning algorithm
was proposed to decide the structure of fuzzy rules and turn the adjustable
parameters through the backpropagation algorithm.

For the aforementioned controllers (TQNFN controller, PID controller,
manually designed fuzzy controller and SCFNN controller), three groups of
computer simulations are conducted on the water bath temperature control
system. Each simulation is performed over 120 sampling time steps.



A TSK-Type Quantum Neural Fuzzy Network 861

The first task is to control the simulated system to follow three set-points.

yref(k) =

⎧⎪⎨
⎪⎩

f(35Ċ), for k ≤ 40

f(55Ċ), for 40 < k ≤ 80

f(75Ċ), for 80 < k ≤ 120

(21)

The regulation performance of the TQNFN model is shown in Figure 4(a). We
also test the regulation performance by using SCFNN controller [8]. The error
curves of TQNFN controller and SCFNN controller between k=80 and k=100
are shown in Figure 4(b). In this figure, the TQNFN controller obtains smaller
errors than the SCFNN controller. To test their regulation performance, a
performance index, sum of absolute error (SAE), is defined by

SAE =
∑
k

|yref(k) − y(k)| (22)

where yref (k) and y(k) are the reference output and the actual output of
the simulated system, respectively. The SAE values of the TQNFN controller,
the PID controller, the fuzzy controller, the NN controller and the SCFNN
controller are 355.11, 418.5, 401.5, 364.52 and 356.41, which are shown in the
first column of Table 2. The proposed TQNFN controller obtains much better
SAE value of regulation performance than other methods.

The second set of simulations is carried out for the purpose of studying the
noise-rejection ability of the five controllers when some unknown impulse noise
is imposed on the process. One impulse noise value -5Ċ is added to the plant
output at the sixtieth sampling instant. A set-point of 50Ċ is performed in
this set of simulations. For the TQNFN controller, the same training scheme,
training data and learning parameters are used as those used in the first set
of simulations. The behaviors of the TQNFN controller under the influence of
impulse noise and the corresponding errors are shown in Figure 5(a)-(b). The
SAE values of the TQNFN controller, the PID controller, the fuzzy controller,
the NN controller and the SCFNN are 270.85, 311.5, 275.8, 272.17 and 280.5,
which are shown in the second column of Table 2. It is observed that the
TQNFN controller performs quite well. It recovers very quickly and steadily
after the presentation of the impulse noise.

One common characteristic of many industrial-control processes is that
their parameters tend to change in an unpredictable way. To test the robustness
of the five controllers, a value of 0.7 × u(k − 2) is added to the plant input
after the sixtieth sample in the third set of simulations. A set-point of 50Ċ is
used in this set of simulations. For the TQNFN controller, the same training
scheme, training data and learning parameters are used as those used in the
first set of simulations. The behaviors of the TQNFN controller when there is
a change in the plant dynamics are shown in Figure 6(a). The corresponding
errors of the TQNFN and SCFNN controllers are shown in Figure 6(b). The
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SAE values of the TQNFN controller, the PID controller, the fuzzy controller,
the NN controller and the SCFNN controller are 262.77, 322.2, 273.5, 262.8
and 270.21, which are shown in the third column of Table 2. The results show
the good control and disturbance rejection capabilities of the trained TQNFN
controller in the water bath system.

For the aforementioned simulation results, Table 2 has shown that the pro-
posed TQNFN controller has better performance than that of other methods.
For the fuzzy controller, the numbers of rules and membership functions have
to be decided and tuned by hand. As for the PID controller, the parameters
Kp, KI , and KD also have to be decided properly. For the fuzzy and PID
controllers, therefore, they usually require a long time in design for achieving
good performance. In the TQNFN controller, however, no controller parame-
ters have to be decided in advance. We only need to choose propose training
patterns of the TQNFN controller. Although the structure of TQNFN con-
troller is more complicated than the fuzzy and PID controllers, in general, the
TQNFN controller usually spends a relatively short time in design for achiev-
ing good performance. This study attempts to emphasize the methodology
and control abilities of the proposed TQNFN model. In the future, we will ap-
ply the proposed TQNFN controller on a real water bath temperature control
system.

5 Conclusion

In this paper, a TSK-type quantum neural fuzzy network (TQNFN) was pro-
posed for temperature control application. The TQNFN model is a five-layer
structure. In the hidden layer, quantum function neurons are adopted. The pro-
posed learning algorithm uses the self-clustering algorithm (SCA) to perform
structure learning and the backpropagation algorithm to perform parameter
learning. Finally, computer simulation results have shown that the proposed
TQNFN controller has better performance than that of other methods.
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Fig. 1. Quantum membership function shown in (a) one-dimension (b) two-dimensions.
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Fig. 2. Structure of the proposed TQNFN.

Fig. 3. Flow diagram of using TQNFN controller for solving the temperature control problem.



866 C.J. Lin, C.H. Chen and C.Y. Lee

Fig. 4. (a) Final regulation performance of the TQNFN controller for water bath system. (b) The
error curves of TQNFN controller and SCFNN controller [8] between k=80 and k=100.

Fig. 5. (a) Behavior of the TQNFN controller under the impulse noise for water bath system. (b)
The error curves of TQNFN controller and SCFNN controller [8].

Fig. 6. (a) Behavior of the TQNFN controller when a change occurs in the water bath system. (b)
The error curves of TQNFN controller and SCFNN controller [8].


