Simple Groups With 2-Regular First Prime Graph Component

Behrooz Khosravi

Dept. of Pure Math., Faculty of Math. and Computer Sci.
Amirkabir University of Technology (Tehran Polytechnic)
424, Hafez Ave., Tehran 15914, Iran
and
Institute for Studies in Theoretical Physics and Mathematics (IPM)
khosravibbb@yahoo.com

Ezzat Fakhraei

Dept. of Pure Math., Faculty of Math. and Computer Sci.
Amirkabir University of Technology (Tehran Polytechnic)
424, Hafez Ave., Tehran 15914, Iran

Abstract

Let G be a finite group. The prime graph of G is the graph whose vertex set is the prime divisors of $|G|$, and two distinct primes p and q are joined by an edge if and only if G contains an element of order pq. We denote by $\Gamma(G)$ the prime graph of G.

M. S. Lucido and A. R. Moghaddamfar in (Lucido and et. al. (2004), Groups with complete prime graph connected components, J. Group Theory, 31: 373-384) determined finite simple groups G, whose prime graph components are complete.

Let $\Gamma(G)$ be non-connected and Δ be a connected component of $\Gamma(G)$. It was proved that if the vertex set of Δ does not contain 2, then Δ is a clique. In this paper, we determine finite simple groups G such that the connected component of $\Gamma(G)$ containing 2, is 2-regular.

Mathematics Subject Classification: 20D05, 20D60, 20D08.
Keywords: Simple groups, prime graph, order elements.

1The first author was supported in part by a grant from IPM (No. 83200023).
2The authors would like to thank Amirkabir University for the financial support.
1 Introduction

If \(n \) is an integer, then we denote by \(\pi(n) \) the set of all prime divisors of \(n \).
If \(G \) is a finite group, then the set \(\pi(|G|) \) is denoted by \(\pi(G) \). Also the set of
order elements of \(G \) is denoted by \(\pi_e(G) \). Obviously \(\pi_e(G) \) is partially ordered
by divisibility. Therefore it is uniquely determined by \(\mu(G) \), the subset of its
maximal elements.

We construct the prime graph of \(G \) as follows: the prime graph \(\Gamma(G) \) of a
group \(G \) is the graph whose vertex set is \(\pi(G) \), and two distinct primes \(p \) and
\(q \) are joined by an edge (we write \(p \sim q \)) if and only if \(G \) contains an element
of order \(pq \). Let \(t(G) \) be the number of connected components of \(\Gamma(G) \) and let
\(\pi_1(G), \pi_2(G), \ldots, \pi_{t(G)}(G) \) be the connected components of \(\Gamma(G) \). Sometimes
we use the notation \(\pi_i \) instead of \(\pi_i(G) \). If \(2 \in \pi(G) \), then we always suppose
\(2 \in \pi_1 \). Denote by \(\mu_i = \mu_i(G) \) the set of all \(n \in \mu(G) \) such that each prime
divisor of \(n \) belongs to \(\pi_i \).

The concept of prime graph arose during the investigation of certain coho-
omological questions associated with integral representations of finite groups. It turns out that \(\Gamma(G) \) is not connected if and only if the augmentation ideal
of \(G \) is decomposable as a module \([6]\). Also non-connectedness of \(\Gamma(G) \) has
relations with the existence of isolated subgroups of \(G \). A proper subgroup \(H \)
of \(G \) is isolated if \(H \cap H^g = 1 \) or \(H \) for every \(g \in G \) and \(C_G(h) \leq H \) for all
\(h \in H \). It was proved in \([20]\) that \(G \) has a nilpotent isolated Hall \(\pi \)-subgroup
whenever \(G \) is non-solvable and \(\pi = \pi_i \) \((i > 1)\). In fact we have the following
equivalences:

Theorem 1.1. \(([13]) \) If \(G \) is a finite group, then the following are equivalent:

(i) the augmentation ideal of \(G \) decomposes as a module,
(ii) the group \(G \) contains an isolated subgroup,
(iii) the prime graph of \(G \) has more than one component.

It is therefore interesting to discuss about the prime graph of finite groups. It has been proved that for every finite group \(G \) we have \(t(G) \leq 6 \) \([8, 13, 20]\)
and the diameter of \(\Gamma(G) \) is at most 5 \([14]\). Also Hagie in \([7]\) and the first
author in \([12]\) determined finite groups \(G \) satisfying \(\Gamma(G) = \Gamma(S) \), where \(S \) is
an almost sporadic simple group. It is proved that if \(G \) is a finite simple group
and \(\Gamma(G) \) is non-connected, then \(\pi_i(G) \), where \(i \geq 2 \), is a complete graph (or clique). Lucido and et. al. in \([17]\) determined finite simple groups \(G \)
whose prime graph components are complete. This is equivalent to \(\pi_1 \) is complete.
A graph is complete if every pair of elements is joined by an edge.

In this paper, we determine finite simple groups \(G \) such that \(\pi_1 \) is \(2 \)-regular,
i.e. every element in \(\pi_1 \) is joined to exactly two elements of \(\pi_1 \). In fact we
prove the following result:
Main Theorem. Let G be a finite simple group. Then the first connected component of $\Gamma(G)$ (i.e. $\pi_1(G)$) is 2-regular if and only if G is one of the following: A_9, J_1, J_2, J_3, HS, $PSL(2,q)$ where $4 \mid (q - 1)$ and $|\pi(q - 1)| = 3$, $PSL(2,q)$ where $4 \mid (q + 1)$ and $|\pi(q + 1)| = 3$; $PSp(4,q)$ where $q = 4, 5, 7, 8, 9, 17$; $PSp(6,2)$; $PSL(3,9)$, $PSL(4,3)$; $3D_4(2)$; $G_2(9)$; $O^+(8)$.

In this paper, all groups are finite and by simple groups we mean non-abelian simple groups. All further unexplained notations are standard and refer to [3], for example. We use the results of J. S. Williams [20], N. Iiyori and H. Yamaki [8] and A. S. Kondrat’ev [13] about the prime graph of simple groups. We note that we will use the classification of finite simple groups, in the sequel.

2 Preliminary Results

Definition 2.1. A graph P is called an r-regular graph, if every vertex of P is joined to exactly r vertices of P.

Lemma 2.1. ([20]) Let G be a finite simple group whose prime graph $\Gamma(G)$ is not connected. Then π_i is a clique, for $i \geq 2$.

Lemma 2.2. ([14, Lemma 5 and Proposition 7]) If G is a finite simple group and $p \in \pi_1(G)$, then $d(2,p) \leq 2$. Also if G is a finite group and $p \in \pi_1(G)$, then $d(2,p) \leq 3$.

Lemma 2.3. ([21]) Let A_n be the alternating group on n elements and $m = p_1^{a_1}p_2^{a_2}\cdots p_s^{a_s}$, where p_1, p_2, \ldots, p_s are distinct primes and a_1, a_2, \ldots, a_s and s are natural numbers. Then A_n has an element of order m if and only if $p_1^{a_1} + p_2^{a_2} + \cdots + p_s^{a_s} \leq n$ for odd m and $p_1^{a_1} + p_2^{a_2} + \cdots + p_s^{a_s} \leq n - 2$ for even m.

Lemma 2.4. ([17, Theorem 1]) Let G be a finite simple group. Then all the connected components of $\Gamma(G)$ are cliques if and only if G is one of the following: A_5, A_6, A_7, A_9, A_{12}, A_{13}; M_{11}, M_{22}, J_1, J_2, J_3, HS; $PSL(2,q)$ with $q > 2$, $Sz(q)$ with $q = 2^{2m+1}$, $PSp(4,q)$, $G_2(3^k)$, $PSL(3,q)$ where q is a Mersenne prime, $PSU(3,q)$ where q is a Fermat prime, $PSL(3,4)$, $PSU(3,9)$, $PSp(6,2)$, $PSU(4,3)$, $PSU(6,2)$, $O^+_8(2)$, $3D_4(2)$.

Lemma 2.5. ([17, Lemma 9]) If $G \neq A_{10}$ is a finite simple group and $\Gamma(G)$ is connected, then there exist three primes $r, s, t \in \pi(G)$ such that $\{rs, tr, ts\} \cap \pi_e(G) = \emptyset$.

In this paper, all groups are finite and by simple groups we mean non-abelian simple groups. All further unexplained notations are standard and refer to [3], for example. We use the results of J. S. Williams [20], N. Iiyori and H. Yamaki [8] and A. S. Kondrat’ev [13] about the prime graph of simple groups. We note that we will use the classification of finite simple groups, in the sequel.
Lemma 2.6. ([19]) Let $a, b \in PSL(n, q)$ where $q = p^m$, $n \geq 4$, $|a| = p$ and \(ab = ba\). Then $\pi([b]) \subseteq \pi(SL(n - 2, q))$.

Definition 2.2. By using the prime graph of G, the order of G can be expressed as a product of coprime positive integers m_i, $i = 1, 2, \ldots, t(G)$ where $\pi(m_i) = \pi_i(G)$. These integers are called the order components of G. The set of order components of G will be denoted by $OC(G)$. Also we call $m_2, \ldots, m_t(G)$ the odd order components of G.

The order components of non-abelian simple groups are listed in [9].

Also we need the following number theoretic lemmas:

Lemma 2.7. ([11]) The only solution of the equation $p^m - q^n = 1$; p, q prime; and $m, n > 1$ is $3^2 - 2^3 = 1$.

Next lemma was introduced by Crescenzo and modified by Bugeaud:

Lemma 2.8. ([4, 11]) With the exceptions of the relations $(239)^2 - 2(13)^4 = -1$ and $(3)^5 - 2(11)^2 = 1$ every solution of the equation

$$p^m - 2q^n = \pm 1; \ p, q \ \text{prime}; \ m, n > 1,$$

has exponents $m = n = 2$; i.e. it comes from a unit $p - q.2^{\frac{1}{2}}$ of the quadratic field $Q(2^{\frac{1}{2}})$ with the coefficients p, q are prime.

Lemma 2.9. (Zsigmondy’s Theorem) ([22])

Let p be a prime and n be a positive integer. Then one of the following holds:

(i) there is a primitive prime p' for $p^n - 1$, that is, $p' | (p^n - 1)$ but $p' \nmid (p^m - 1)$, for every $1 \leq m < n$,

(ii) $p = 2$, $n = 1$ or 6,

(iii) p is a Mersenne prime and $n = 2$.

We denote by q_n one of the primitive prime divisors of $q^n - 1$. Therefore if q_n divides $q^m - 1$, then $m \geq n$.

Lemma 2.10. ([16, Lemma 2]) Let $q = p^f$, where p is a prime and f a natural number. Then

(i) if f is even, $3 \mid (2^f - 1)$, if f is odd, $3 \mid (2^f + 1)$;

(ii) $|\pi(q^2 - 1)| \leq 2 \iff q = 2, 3, 4, 5, 7, 8, 9, 17$;

(iii) $|\pi((q^2 - 1)/(3, q - 1))| \leq 2 \iff q = 2, 3, 4, 5, 7, 8, 9, 16, 17, 25, 49, 97$ or $q = p$, $p - 1 = 3 \cdot 2^\alpha$, $p + 1 = 2t$, $\alpha \geq 2$ and t an odd prime;
and G power, then there exists a torus T such that
\[d(T) = p + 1 = 3 \cdot 2^n; \]

(v) $|\pi((q^2 - 1)/(3, q + 1))| \leq 2 \implies q = 2f$, f a prime, or $q = 3$, 9, or $q = p$ and $p + 1 = 3 \cdot 2^n$.

By using Lemma 2.3, it follows that $|\pi((q - 1)/(2, q - 1))| \leq 2 \implies q \in \{4, 9, 16, 81\}$ or $q = p^f$, $f = 1$ or an odd prime.

3 Proof of the Main Theorem

In this section we prove the main theorem. First we prove a few lemmas.

By using Lemma 2.2 and the definition of a 2-regular graph, it follows that if G is a finite group and $\pi_1(G)$ is 2-regular, then $3 \leq |\pi_1(G)| \leq 5$, since $d(2, p) \leq 2$ for every $p \in \pi_1(G)$. If G is an abelian simple group, then $G \simeq Z_p$ for some prime number p. Therefore $|\pi_1(G)| = 1$ and hence $\pi_1(G)$ is not 2-regular.

The structure of the sporadic simple groups is described in [3]. Now easily we can prove the following lemma.

Lemma 3.1. Let G be a sporadic simple group and $\pi_1(G)$ be 2-regular. Then G is J_1, J_2, J_3 or HS.

Lemma 3.2. If G is an alternating group on $n \geq 5$ elements and $\pi_1(G)$ is 2-regular, then $n = 9$.

Proof. By using Lemma 2.3, it follows that if $n \geq 10$, then $2 \sim 3 \sim 5 \sim 2$ and $7 \in \pi_1(G)$, which implies that $\pi_1(G)$ is not 2-regular. If $n = 8$, then $2 \sim 3 \sim 5$ but $2 \not\sim 5$. If $n = 5, 6$ or 7, then $|\pi_1(G)| \leq 2$ and so $\pi_1(G)$ is not 2-regular. If $n = 9$, then $|\pi_1(G)| = 3$ and $\pi_1(G)$ is 2-regular. \diamond

Lemma 3.3. Let G be a finite simple group. If $\Gamma(G)$ is connected, then $\Gamma(G)$ is not 2-regular.

Proof. We know that $\Gamma(A_{10})$ is not 2-regular, by Lemma 3.2. Let $G \neq A_{10}$ be a finite simple group and $\Gamma(G)$ be 2-regular. Now by using Lemma 2.5, it follows that there exist $r, s, t \in \pi(G)$ such that $\{tr, ts, rs\} \cap \pi_e(G) = \emptyset$. Also $3 \leq |\pi_1(G)| \leq 5$, which is a contradiction, since every element of $\pi_1(G)$ is connected to exactly two elements of $\pi_1(G)$ and so G is not 2-regular. \diamond

Now we remind a well known result about simple groups of Lie type (see [1, 2]). Let $G = ^dL_n(q)$ be a simple group of Lie type of rank n over the field $F = GF(q)$, where $q = p^n$. By using the table of order components of simple groups (see [9]), it follows that $\pi(q - 1) \subseteq \pi_1(G)$, where G is a finite simple group of Lie type and $G \neq PSL(2, q)$ and $G \neq Sz(q)$. So if $G \neq PSL(2, q)$ and $G \neq Sz(q)$ is a finite simple group of Lie type and q is an odd prime power, then there exists a torus T of G, an involution $x \in T$ and a unipotent
subgroup \(H \) of \(G \), such that \(x \) centralizes an element of order \(p \) of \(H \) (see [1]). Therefore if \(q = p^a \) is odd, then \(p \sim 2 \) in \(\Gamma(G) \).

We recall that every element of \(\pi_1(G) - \{ p \} \) divides the order of an abelian maximal torus \(T \) of \(G \) (see [2]). If \(t \in \pi_1(G) - \{ p \} \) and \(t \mid |T| \), then there exists an involution \(x \in G \), such that \(k = (|T|, |C_G(x)|) \neq 1 \). If \(p' \) is a prime divisor of \(k \), then \(tp' \mid |T| \) and \(p' \mid |C_G(x)| \), which implies that \(t \sim p' \) and \(2 \sim p' \) in \(\Gamma(G) \).

By using the above discussion, we can conclude that:

Lemma 3.4. Let \(G = dL_n(q) \) be a simple group of Lie type of rank \(n \) over the field \(F = GF(q) \), where \(q = p^a \). Also let \(G \neq PSL(2,q) \) and \(G \neq Sz(q) \). If \(p \) is odd, then \(2 \sim p \) in \(\Gamma(G) \). If \(p = 2 \) and there exists a maximal torus \(T \) of \(G \) such that \(|T| = s^m \), where \(s \in \pi_1(G) \), then \(2 \sim s \) in \(\Gamma(G) \).

Lemma 3.5. Let \(G \) be a finite simple group of Lie type. Then \(\pi_1(G) \) is 2–regular if and only if \(G \) is one of the following groups: \(PSL(2,q) \), where \(4 \mid (q - 1) \) and \(|\pi(q - 1)| = 3 \); \(PSL(2,q) \), where \(4 \mid (q + 1) \) and \(|\pi(q + 1)| = 3 \); \(PSp(4,q) \), where \(q = 4, 5, 7, 8, 9, 17; PSp(6,2), PSU(4,3), PSU(3,9), 3D_4(2), G_2(9), O_8^+(2) \).

Proof. In the sequel we use the classification of finite simple groups and for the order components of non-abelian simple groups we refer to the tables in [9]. Let \(G \) be a finite simple group and \(\pi_1(G) \) be 2–regular.

Now in the following cases we consider the simple groups with non-connected prime graph.

Case 1. Let \(G \cong PSL(n,q) \), where \(q = p^a \). We note that the orders of maximal tori of \(PSL(n,q) \) are

\[
\frac{\prod_{i=1}^{k} (q^{r_i} - 1)}{(q - 1)(n, q - 1)} \quad (r_1, \ldots, r_k) \in Par(n).
\]

(1)

First let \(n = 2 \). We know that for \(q > 2 \), every component of the prime graph of \(G \) is complete, since

\[
\mu(PSL(2,q)) = \left\{ p, \frac{q - 1}{d}, \frac{q + 1}{d} \right\},
\]

where \(d = (q - 1, 2) \). Hence \(\pi_1(PSL(2,q)) \) is 2–regular if and only if \(|\pi_1(G)| = 3 \). If \(q = 2^a \), then \(\pi_1(G) = \{ 2 \} \) and hence \(\pi_1(G) \) is not 2–regular. If \(4 \mid (q - 1) \), then \(m_1 = q - 1 \) and hence \(\pi_1(G) \) is 2–regular if and only if \(|\pi(q - 1)| = 3 \). If \(4 \mid (q + 1) \), then similarly we get the result.

For \(n = 3 \) we have the following results ([17]). If \(d = (q - 1, 3) \) and \(q \) is odd, then

\[
\mu(PSL(3,q)) = \begin{cases}
\{ q - 1, p(q - 1)/3, (q^2 - 1)/3, (q^2 + q + 1)/3 \} & \text{if } d = 3 \\
\{ p(q - 1), q^2 - 1, q^2 + q + 1 \} & \text{if } d = 1
\end{cases}
\]

(2)
and if \(q = 2^a \), then

\[
\mu(PSL(3, q)) = \begin{cases}
\{4, q-1, 2(q-1)/3, (q^2 - 1)/3, (q^2 + q + 1)/3\} & \text{if } d = 3 \\
\{4, 2(q-1), q^2 - 1, q^2 + q + 1\} & \text{if } d = 1 \\
\end{cases}
\]

(3)

By using (1) it follows that there exists a maximal torus \(T \) of order \((q^2 - 1)/(3, q - 1)\). Every maximal torus is abelian and hence if \(\pi_1(G) \) is 2–regular, then \(|\pi((q^2 - 1)/(3, q - 1))| \leq 2\), since \(p \in \pi_1(G) \) and \((p, q^2 - 1) = 1\). Therefore \(q = 2, 3, 4, 5, 7, 8, 9, 16, 17, 25, 31, 49 \) or \(q = p \) where \(p - 1 = 3 \cdot 2^\beta \), \(p + 1 = 2t^\gamma \) and \(t \) is an odd prime number and \(\beta \geq 2 \), by Lemma 2.10. In each case by easy calculation we can compute \(\mu(G) \) and it follows that \(\pi_1(PSL(3, q)) \) is not 2–regular. For example let \(q = p \) where \(p - 1 = 3 \cdot 2^\beta \), \(p + 1 = 2t^\gamma \) and \(t \) is an odd prime number and \(\beta \geq 2 \). Then \(d = 3 \) and so

\[
\mu(G) = \{3 \cdot 2^\beta, p \cdot 2^\beta, 2^{\beta+1}t^\gamma, 3 \cdot 2^{2\beta} + 2^{\beta+1} + 2^\beta + 1\}.
\]

Therefore \(2 \sim 3 \), \(2 \sim p \) and \(2 \sim t \), which is a contradiction.

Again by using (1), it follows that if \(n \geq 4 \), then \(q^2 - 1 \) divides the order of a maximal torus \(T \) of \(G \). Hence if \(\pi_1(G) \) is 2–regular, then \(q = 2, 3, 4, 5, 7, 8, 9, 17 \), by Lemma 2.10.

We recall that \(\Gamma(PSL(4, q)) \) is non-connected if and only if \((q - 1) \mid 4\). Therefore if \(q = 4, 7, 8, 9 \) or 17, then \(\pi_1(G) \) is not 2–regular, by Lemma 3.3. If \(q = 2 \) or 3, then by using [3] it follows that \(\pi_1(G) \) is not 2–regular. So let \(G = PSL(4, 5) \). By Lemma 3.4, it follows that \(2 \sim 5 \). Also \(q^2 - 1 \) and \((q^4 - 1)/(q - 1)(4, q - 1)\) divide the orders of some maximal tori of \(G \). Therefore \(2 \sim 3 \) and \(3 \sim 13 \). But by using Lemma 2.6, it follows that \(13 \sim 5 \), which is a contradiction.

If \(n \geq 5 \), then as we mentioned above \(q = 2, 3, 4, 5, 7, 8, 9, 17 \). If \(q = 2 \), then \((q^3 - 1)(q^2 - 1) = 21\) and \(q^4 - 1 = 15 \) divide the orders of some maximal tori of \(G \). So \(3 \sim 5 \) and \(3 \sim 7 \). Also \((q^3 - 1)(q - 1)^{n-2} = 3\) is the order of a maximal tori of \(G \). Hence \(3 \sim 2 \), by Lemma 3.4. Therefore \(\pi_1(G) \) is not 2–regular. In other cases by using the orders of maximal tori of \(G \) and Lemma 3.4, we conclude that \(\pi_1(G) \) is not 2–regular. For example if \(q = 3 \), then \(q^3 - 1 = 26 \) and \((q^4 - 1)/2 = 40\) divide the orders of some maximal tori of \(G \). Hence \(2 \sim 13 \) and 2 \sim 5. Also 2 \sim 3, by Lemma 3.4, which is a contradiction. If \(q = 4 \), then \(3 \sim 2, 3 \sim 5 \) and \(3 \sim 7 \), which is a contradiction. For convenience we omit the details of other cases.

Case 2. Let \(G \cong PSU(n, q) \), where \(q = p^a \). The orders of maximal tori of \(PSU(n, q) \) are

\[
\prod_{i=1}^{k}(q^{r_i} - 1) \prod_{j=1}^{m}(q^{s_i} + 1) / (q + 1)(n, q + 1),
\]

(4)
\((r_1, \ldots, r_k; s_1, \ldots, s_m) \in \text{Par}(n), \ r_i \text{ even}, \ s_j \text{ odd.}\)

If \(n = 2\), then \(PSU(2, q) = PSL(2, q)\), which is discussed in Case 1.

If \(n = 3\), then for \(d = (q + 1, 3)\), we have the following result ([17]). If \(q\) is odd, then

\[
\mu(PSU(3, q)) = \begin{cases}
q + 1, p(q + 1)/3, (q^2 - 1)/3, (q^2 - q + 1)/3 & \text{if } d = 3 \\
(p(q + 1), q^2 - 1, q^2 - q + 1) & \text{if } d = 1
\end{cases}
\]

and if \(q = 2^\alpha\), then

\[
\mu(PSU(3, q)) = \begin{cases}
4q + 1, 2(q + 1)/3, (q^2 - 1)/3, (q^2 - q + 1)/3 & \text{if } d = 3 \\
4, 2(q + 1), q^2 - 1, q^2 - q + 1 & \text{if } d = 1
\end{cases}
\]

We can see that \((q^2 - 1)/(3, q + 1)\) divides the order of a maximal torus \(T\), and since \(p \in \pi_1(G)\), it follows that if \(\pi_1(G)\) is 2-regular, then \(\pi_1((q^2 - 1)/(3, q + 1))| \leq 2\). By using Lemma 2.10 we have \(q = 3, 9\) or \(q = 2^\alpha\), where \(\alpha\) is a prime number, or \(q = p\), where \(p + 1 = 3 \cdot 2^\beta\). Now we consider these cases separately.

If \(q = 2^\alpha\), where \(\alpha = 2\), then \(d = 1\) and hence \(\mu(PSU(3, 4)) = \{4, 10, 15, 13\}\), which implies that \(2 \sim 5\) and \(3 \sim 5\), but \(2 \sim 3\), which is a contradiction.

If \(q = 2^\alpha\), where \(\alpha\) is an odd prime, then \(3 \mid (q + 1)\). So \(d = 3\) and hence

\[
\mu(PSU(3, q)) = \{4, q + 1, 2(q + 1)/3, (q^2 - 1)/3, (q^2 - q + 1)/3\}.
\]

If \(r, s > 3\) are two distinct prime divisors of \(q + 1\), then we get a contradiction, since \(2 \sim r \sim s \sim 2\) and \(2 \sim 3\). So \(|\pi(q + 1)| \leq 2\) and \(3 \in \pi(q + 1)\).

Now we consider two cases: If \(q + 1 = 3^m\), then \(2^\alpha + 1 = 3^m\) and \(\alpha \geq 1\). This equation has only one solution \((q, m) = (8, 2)\), by Lemma 2.7. Then \(\mu(PSU(3, 8)) = \{4, 9, 6, 15, 57\}\), and so \(3 \sim 2, 3 \sim 5\) and \(3 \sim 19\), which is a contradiction. If \(q + 1 = 3^\beta t^\gamma\), where \(t > 3\) is a prime number, then consider a prime number \(s\) where \(s \mid (q - 1)\). Since \(q - 1\) is odd, it follows that \((q - 1, q + 1) = 1\) and hence \(s \not\in \{2, 3, t\}\). Therefore \(t \sim 2, t \sim 3\) and \(t \sim s\), which is a contradiction.

If \(q = 3\), then \(\mu(PSU(3, 3)) = \{12, 8, 7\}\) and hence \(|\pi_1(G)| = 2\), which is a contradiction.

If \(q = 9\), then \(\mu(PSU(3, 9)) = \{30, 80, 73\}\). Therefore \(\pi_1(PSU(3, 9))\) is 2-regular.

If \(q = p\) and \(p + 1 = 3 \cdot 2^\beta\), then \(\mu(PSU(3, p)) = \{3 \cdot 2^\beta, p \cdot 2^\beta, 2^\beta(p - 1), (p^2 - p + 1)/3\}\). Let \(t\) be a prime divisor of \(p - 1\). If \(t\) is odd, then \(2 \sim t, 2 \sim 3\) and \(2 \sim p\), which is a contradiction. If \(p - 1 = 2^m\), then \(\pi_1(G) = \{2, 3, p\}, 2 \sim 3\) and \(2 \sim p\) but \(3 \sim p\), which is a contradiction.

If \(n = 4\), then the prime graph of \(G\) is non-connected if and only if \((q + 1) \mid 4\), i.e. \(q = 3\). If \(q = 3\), then \(\pi_1(PSU(4, 3)) = \{2, 3, 5\}\) and \(\Gamma(G)\) is complete. Hence \(\pi_1(PSU(4, 3))\) is 2-regular.
If \(n \geq 5 \), then by (4), it follows that \(q^2 - 1 \) divides the order of a maximal torus \(T \) of \(G \). Also \(p \in \pi_1(G) \), which implies that \(|\pi(q^2 - 1)| \leq 2 \). Hence \(q = 2, 3, 4, 5, 7, 8, 9, 17 \). We get a contradiction, using Lemma 3.4 and the orders of maximal tori, as in case (1).

Case 3. If \(G \cong E_7(2) \) or \(E_7(3) \), then \(|\pi_1(G)| > 5 \), which is a contradiction. Also \(G \not\cong F_4(2) \), since \(\pi_1(G) = \{2, 3, 5\} \) and \(\Gamma(G) \) is not complete by Lemma 2.4. We know that \(\pi_1(Sz(q)) = \{2\} \) and so \(G \not\cong Sz(q) \).

Case 4. Let \(G \cong G_2(q) \), where \(q = p^3 > 2 \).

By using [10], it follows that \(q^2 - 1 \) is the order of a maximal torus of \(G \). Also \(p \in \pi_1(G) \), which implies that \(|\pi(q^2 - 1)| \leq 2 \). Therefore \(q = 3, 4, 5, 7, 8, 9, 17 \).

If \(q = 3 \) or \(q = 9 \), then \(\pi_1(G) \) is complete by Lemma 2.4. Therefore \(\pi_1(G) \) is 2–regular if and only if \(|\pi_1(G)| = 3 \). But if \(q = 3 \), then \(|\pi_1(G)| = 2 \). So \(\pi_1(G_2(9)) \) is 2–regular. If \(q = 4 \), then \(q^2 - 1 = 15, q^2 + q + 1 = 21 \) and \((q - 1)^2 \) are the orders of some maximal tori of \(G \). Therefore \(3 \sim 2, 3 \sim 5 \) and \(3 \sim 7 \), which is a contradiction.

It is proved that if \(q \equiv 1 \pmod{3} \), then \(q_3 \in \pi_1(G) \) and \(p \sim q_3 \). Also if \(q \equiv -1 \pmod{3} \), then \(q_6 \in \pi_1(G) \) and \(p \sim q_6 \) (see [18]). Now by using these facts we have:

If \(q = 5 \), then \(q^2 - 1 = 24 \) and \(q^2 - q + 1 = 21 \) are the orders of some maximal tori of \(G \). Therefore \(3 \sim 2 \) and \(3 \sim 7 \). Also by using Lemma 3.4, it follows that \(5 \sim 2 \). But \(7 = q_6 \sim 5 \), which is a contradiction. Similarly if \(q = 7 \), then \(q^2 - 1 = 48 \) and \(q^2 + q + 1 = 57 \) and so \(3 \sim 2, 3 \sim 19 \) and \(2 \sim 7 \). But \(19 = q_3 \sim 7 \), which is a contradiction. If \(q = 8 \), then \(q^2 - 1 = 63, q^2 - q + 1 = 57 \) and \((q + 1)^2 = 9^2 \). Therefore \(3 \sim 7, 3 \sim 19 \) and \(3 \sim 2 \), which is a contradiction. If \(q = 17 \), then \(q^2 - q + 1 = 273 \) and so \(3 \sim 7 \sim 13 \sim 3 \), which is a contradiction.

Case 5. Let \(G \cong E_8(q) \), where \(q = p^a \).

If \(q \neq 2 \), then by using the order components of \(E_8(q) \) we know that \(q(q^4 - 1)(q^5 - 1)(q^6 - 1)(q^7 - 1)(q^9 - 1) \) divides \(m_1 \). Hence by using Zsigmondy’s Theorem (Lemma 2.9) it follows that

\[
\{p, q_4, q_5, q_6, q_7, q_9\} \subseteq \pi_1(G),
\]

and so \(|\pi_1(G)| > 5 \), which is a contradiction. Similarly \(|\pi_1(E_8(2))| > 5 \), which is a contradiction.

If \(G \cong E_6(q) \) or \(2E_6(q) \), then similarly we get a contradiction.

Case 6. If \(G \cong F_4(q), 3D_4(q), 2G_2(q) \), where \(q = 3^{2m+1} \) and \(m > 0 \), or \(2F_4(q) \) where \(q = 2^{2m+1} \) and \(m > 0 \), then we get a contradiction, similarly.

Since the proof is similar for these groups, we give the details of the proof of \(3D_4(q) \). So let \(G \cong 3D_4(q) \). We know that \(q^2 - 1 \) divides the order of a maximal torus of \(G \). Hence \(q = 2, 3, 4, 5, 7, 8, 9, 17 \). If \(q = 2 \), then \(|\pi_1(G)| = 3 \) and the graph of \(G \) is complete, by Lemma 2.4. So \(\pi_1(G) \) is 2–regular. If \(q = 3 \), then \(q^2 - 1 = 26 \) and \(q^3 + 1 = 28 \) divide the order of some maximal tori of \(G \) (see
and so 2 ∼ 13, 2 ∼ 7 and 2 ∼ 3, by Lemma 3.4. Therefore π₁(G) is not 2-regular. If q ≥ 4, then (q^3 − 1)(q + 1) divides the order of a maximal torus of G and |π((q^3 − 1)(q + 1))| ≥ 3. Since |π₁(G)| ̸= 3, we get a contradiction.

Case 7. If G ∼= Bₙ(q), Cₙ(q), Dₙ(q) or 2Dₙ(q), then we get a contradiction, similarly to the above cases. For convenience we give the details of the proof for Cₙ(q). So let G ∼= Cₙ(q) = PSp(2n, q), where q = pᵃ.

First let n = 2. We know that PSp(4, 2) ∼= S₆, which is not a simple group, also we have

$$\mu(G) = \begin{cases}
\{(q^2 + 1)/2, (q^2 - 1)/2, p(q + 1), p(q - 1)\} & \text{if } p \neq 2, 3 \\
\{(q^2 + 1)/(2, q - 1), (q^2 - 1)/(2, q - 1), p(q + 1), p(q - 1), p^2\} & \text{if } p = 2, 3
\end{cases}$$

(7)

By using [17], it follows that (q^2 − 1)/(2, q − 1) divides the order of a maximal torus of G. Also by Lemma 2.4, we know that Γ(G) is complete. Hence |π((q^2 − 1)/(2, q − 1))| = 2 and since π((q^2 − 1)/(2, q − 1)) = π(q^2 − 1), it follows that |π(q^2 − 1)| = 2, and so q = 4, 5, 7, 8, 9, 17.

If n ≥ 3, then similar to the above cases it follows that q = 2, 3, 4, 5, 7, 8, 9, 17. If n = 3 and q = 2, then Γ(G) is complete and |π₁(G)| = 3. Therefore π₁(G) is 2-regular. If q = 2 and n ≥ 4, then q^4 − 1 = 15 and (q^3 − 1)(q + 1) = 21 divide the order of some maximal torus of G and so 3 ∼ 5 and 3 ∼ 7. Also (q − 1)^n−2(q + 1)^2 = 9 is the order of a maximal torus of PSp(2n, 2). Hence by using Lemma 3.4, it follows that 3 ∼ 2, which is a contradiction.

If q = 3, then q^2 + 1 = 10 and (q^3 + 1)/(2, q − 1) = 14 divide the order of some maximal tori of G. So 2 ∼ 7, 2 ∼ 5 and 2 ∼ 3, which is a contradiction.

If q = 4, then (q + 1)^n = 5^n is the order of a maximal torus of G, and so 5 ∼ 2. Also q^2 − 1 = 15 and (q^2 + 1)/(2, q + 1) = 65 divide the orders of some maximal tori of G, and so 5 ∼ 3 and 5 ∼ 13, which is a contradiction.

Similarly for other values of q, we get a contradiction by using Lemma 3.4 and the order of maximal tori of G.

Now the proof of the main theorem is complete.

\[\diamond\]

Acknowledgements

The authors would like to thank Amirkabir University of Technology and the Institute for Studies in Theoretical Physics and Mathematics (IPM), Tehran, IRAN for the financial support.

We dedicate this paper to our parents.
References

[12] Behrooz Khosravi, Behnam Khosravi and Bahman Khosravi, Groups with the same prime graph as an almost sporadic simple group, submitted.

Received: September 17, 2005