Generalized Derivation in Γ-Regular Ring

D. Krishnaswamy

Associate Professor of Mathematics
Department of Mathematics
Annamalai University, India

N. Kumaresan

Assistant Professor of Mathematics
Faculty of Marine Science
CAS in Marine Biology
Parangipettai, India
karunyasreebk@gmail.com

Abstract

In this paper, we have defined Symmetric Martindale Γ– Regular ring and generalized derivation in Γ– Regular ring. Further, we have proved that the product of two generalized derivation in Γ– Regular ring is again a generalized derivation in Γ– Regular ring.

Mathematics Subject Classification: 15A33, 15A60

Keywords: Gamma ring, Generalized derivation, Regular ring, Γ– Regular ring, Symmetric Martindale Γ– Regular ring

1 Introduction

The notion of a generalized derivation in rings was introduced by Bojan Hvala in 1998[2]. In 1936, the concept of a regular ring was introduced by Von-Neumann [6] and the characterization of a generalized derivation in regular ring was studied in [4]. Γ– ring was introduced by Nobusawa [5] and further Barnes [1] studied various properties in Γ– rings.

In 2009, Krishnaswamy introduced Γ– Regular ring and characterization of Γ– Regular ring was studied in [3]. In this paper, we study the generalized derivation in Γ– Regular ring.
In view of the generalized derivation in Regular ring, we now define the generalized derivation in Γ– Regular ring as follows:

A function $f : R \times \Gamma \times R \to R$ will be called a generalized derivation in Γ– Regular ring, if there exists a derivation D of R such that $f(axa) = ca + aD$ for $a \in R, x \in \Gamma$ and c is a fixed element in R.

2 Preliminaries

Definition 2.1 Let R and Γ be additive abelian groups. Then R is called a Γ ring if for any $x, y, z \in R$ and $\alpha, \beta \in \Gamma$, the following conditions are satisfied

(i) $x\alpha y \in R$
(ii) $(x + y)\alpha z = x\alpha z + y\alpha z; x(\alpha + \beta)z = x\alpha z + x\beta z$
(iii) $(x\alpha y)\beta z = x\alpha (y\beta z)$

Definition 2.2 (2) Let R be Γ– ring and $F : R \to R$ be an additive map. Then, F is called a generalized derivation if there exists a derivation $D : R \to R$ such that $F(axa) = F(x)\alpha y + xaD(y)$ for all $x, y \in R$ and $\alpha \in \Gamma$.

Definition 2.3 (6) An element a of a ring R is said to be regular if and only if for x in R such that $axa = a$. The ring R is regular if and only if each element of R is regular.

Definition 2.4 (4) Let R be an additive abelian group. A function $f : R \to R$ will be called a generalized derivation in Regular ring, if there exist a derivation D of R such that $f(axa) = ca + aD$ for all $x, a \in R$ and c is a fixed element in R.

Definition 2.5 (3) Let R and Γ be two additive abelian groups. An element $a \in R$ is said to be Γ– regular if and only if there exist an element $x \in R$ such that $axa = a$. The ring R is said to be Γ– regular ring if and only if each element of R is Γ– regular ring.

Definition 2.6 The Left Martindale Γ– regular ring of quotients $Q_L R$ is characterized as the unique regular ring extension Q of R satisfying

(i) if $0 \neq q \in Q$ and $0 \neq I, A \subset R$ with $Aq \subset R$, then $Iq \neq 0$.
(ii) if $0 \neq A \subset R$ and $f : A \to R$, then there exist $axq \in Q$ with $afx = axq$ for all $a \in A$ and $x \in \Gamma$.

The Right Martindale Γ– regular ring of quotients $Q_R R$ can be defined in the same manner.

Definition 2.7 The Symmetric Martindale Γ– regular ring of quotients $Q_S R$ is characterized as the unique regular ring extension Q of R satisfying
(i) If $0 \neq q \in Q$ and $0 \neq I, A, B \subseteq R$ with $Aq, qB \subseteq R$, then $Iq, qI \neq 0$.

and (ii) If $0 \neq A, B \subseteq R$ and $f : A \to R, g : B \to R$ and $(af)b = ax(gb)$ for all $a \in A, b \in B$ and $x \in \Gamma$, then there exist $axq \in Q$ with $axf = axq$ and $gbx = gxq$ for all $a \in A, b \in B$ and $x \in \Gamma$.

Definition 2.8 The central closure R_C is a Γ-regular ring which contains the linear identities of R in the sense that if $0 = \neq a, b, c, d \in R$ with $axb = cxd$ for all $x \in \Gamma$ then there exist an element $0 \neq q \in C$ with $a = cxq$ and $b = qxd$.

Definition 2.9 The extend centroid C is a field and it is in the centre of both $Q_R(R)$ and $Q_S(R)$. The extend cetroid of R_C is equal to C, where R_C is equal to its central closure. Since R_C is a Γ-regular ring as well one can construct the Γ-regular rings $Q_R(R)$ and $Q_S(R)$.

Lemma 2.10 If $c_i, d_i \in A$ satisfying $\sum c_i x d_i = 0$ for all $x \in \Gamma$, then there exists c_i's as well as d_i's are C- dependent unless all $c_i = 0$ or $d_i = 0$.

Lemma 2.11 Let $c, d \in A, x \in \Gamma$ and let $f : \Gamma \to A$ be defined by $f(x) = cxd$. If f is a generalized derivation, then either $c \in C$ or $d \in C$.

Proof: Let $a \in R$ and $x \in \Gamma$ by the definition of 2.2, we have

$$caxd = caxd + ax\delta(a),$$

where δ is a derivation. We obtain

$$ax(ad - da) - ax(\delta(a)) = 0$$

for all $a \in R$ and $x \in \Gamma$. Using Lemma 2.10, it follows that either $c \in C$ or $d \in C$.

Preposition 2.12 Suppose that $\sum_{i=1}^{n} f_i(ax)\alpha_d + \sum_{j=1}^{k} c_j \alpha h_j(ax) = 0$ for all $a, \alpha \in R, x \in \Gamma$ where $f_i, h_j \in R$ and $f_i : R \to A$ and $h_j : R \to R_C$ are any maps. If the sets $\sum_{i=1}^{n} d_i + \sum_{j=1}^{k} c_j$ are C- independent, then there exist $q_{ij} \in Q_R(R_C)$ for $i = 1, 2, ..., n$ and $j = 1, 2, ..., k$. Such that $f_i(ax) = -\sum_{j=1}^{k} c_j \alpha q_{ij}$ and $h_j(ax) = \sum_{i=1}^{n} a q_{ij} \alpha d_i$ for all $a, \alpha \in R, x \in \Gamma$ and $i = 1, 2, ..., n$ and $j = 1, 2, ..k$.

Lemma 2.13 Let $f : R \to R_C$ be an additive map satisfying

$$f(axa) = f(ax)a$$

for all $a \in R$ and $x \in \Gamma$. Then there exists $q \in Q_R(R)$ such that $f(ax) = qax$ for all $a \in R$ and $x \in \Gamma$.

Proof: Let $\bar{f} : R \to R_C$ be an extension of f according to

$$\bar{f}(\sum a_i x_i \lambda_i) = \sum \bar{f}(a_i x_i) \lambda_i$$

where $a_i \in R, x_i \in \Gamma$ and $\lambda_i \in C$. Let I be a non-zero ideal in R such that $\lambda_i I \subseteq R$ for every i. Take $a \in I$ and the factors in the sum $\sum a_i x_i (\lambda_i \alpha)$ lie in R. Therefore, we have $0 = \sum \bar{f}(a_i x_i)(\lambda_i a) = \sum \bar{f}(a_i x_i \lambda_i)(a)$ since this is true for all $a \in I$. We have $\sum \bar{f}(a_i x_i) \lambda_i = 0$. Thus \bar{f} is well defined. This fact that $f(axa) = \bar{f}(axa)$ for all $f(axa) = f(ax)a + ax\delta(a)$, can be verified by a direct computation. This proves that
\(\bar{f} : R_C \to R_C \) is a right \(R_C \) module map, hence there exist \(q \in Q_R(R_C) \) such that \(\bar{f}(ax) = qax \), for all \(x \in \Gamma \). Since \(\bar{f} \) is an extension of \(f \). This proves the lemma.

3 Product of two Generalized derivation in \(\Gamma \) – Regular ring

The aim of this section is to prove that the product of two generalized derivation in \(\Gamma \) – Regular ring is again a generalized derivation in \(\Gamma \) – Regular ring.

Theorem 3.1 Let \(R \) be a \(\Gamma \) – Regular ring and let \(f_1, f_2 : R \to R \) be the generalized derivation. Then, the product \(f_3 = f_1f_2 \) is again a generalized derivation if and only if the following conditions hold.

(i) there exists \(\alpha \in C \) such that either \(f_1(axa) = \alpha a \) and \(f_2(axa) = \alpha a \).

(ii) there exists \(p, q \in Q_R(R_C) \) such that \(f_1(axa) = pa \) and \(f_2(axa) = qa \).

(iii) there exists \(p, q \in Q_R(R_C) \) such that \(f_1(axa) = ap \) and \(f_2(axa) = aq \).

Proof : From the definition it is clear that the product \(f_3 = f_1f_2 \) is again a generalized derivation.

To prove the converse, let \(f_3 = f_1f_2 \) is a generalized derivation. We have \(f_3(axa) = f_1(axa)a + axd_i(a) \), for \(i = 1, 2, 3 \) and \(a \in R \) and \(x \in \Gamma \) for some derivations \(d_i \).

Now \(f_3(axa) = f_1[f_2(axa)] \), we obtain
\[
f_2(ax)d_1(a) + f_1(ax)d_2(a) + ax(d_1d_2 - d_3)(a) = 0 \quad \text{for all } a \in R \text{ and } x \in \Gamma.
\]
Replacing \(ax \) by \(axa \), we obtain
\[
f_2(ax)d_1(a) + f_1(ax)ad_2(a) + ax[d_1(\alpha)d_2(a) + d_1(a)d_2(\alpha) + \alpha(d_1d_2 - d_3)(a)] = 0 \quad (1)
\]
for all \(a, \alpha \in R \) and \(x \in \Gamma \).

Fix \(\alpha \) and from proposition 2.12, we have the following two possibilities.

(i) \(d_1(a) \) and \(d_2(a) \) are \(\mathbb{C} \) – dependent for all \(a \in R \).

(ii) there exist \(p_1, p_2 \in Q_R(R_C) \) such that \(f_1(ax) = -ap_1 \) and \(f_2(ax) = -ap_2 \).

From case (II), write \(p = -p_1 \) and \(q = -p_2 \), it follows that the condition (iii) holds.

From case (I), since \(d_1(a) \) and \(d_2(a) \) are \(\mathbb{C} \) – dependent, we have \([d_1(a), d_2(a)] = 0 \) for all \(a \in R \). It follows that
\[\alpha_1 d_1(a) + \alpha_2 d_2(a) = 0 \] for some \(\alpha_1, \alpha_2 \in C \) \quad \rightarrow (2)

When \(d_1 = 0 \), implies that \(f_1(axa) = f_1(ax) a \) for all \(a \in R \) and \(x \in \Gamma \). It follows from lemma 2.13, there exist \(p \in Q_R(R_C) \) such that \(f_1(axa) = pax \). Equation (1) can be written in the form

\[pax \alpha d_2(a) - ax \alpha d_3(a) = 0 \] for all \(a \in R, \alpha \in C \) and \(x \in \Gamma \). \quad \rightarrow (3)

In a similar manner, when \(d_2 = 0 \), yields \(f_2(ax) = qax \) for some \(q \in Q_R(R_C) \) for all \(a \in R \) and \(x \in \Gamma \) it follows that the condition (ii) holds. If \(d_2 \neq 0 \) and \(d_1 = 0 \), we choose \(a \in R \) and \(x \in \Gamma \) from (3) and \(axd_2(a) \neq 0 \) and hence equation (2) together with lemma 2.10 yields \(f_1(axa) = \alpha a \), for some \(\alpha \in C \). Similarly, if \(d_2 = 0 \) and \(d_1 \neq 0 \), yields \(f_2(axa) = \alpha a \) for all \(a \in R, x \in \Gamma \) and hence (i) holds.

Finally, let us consider \(d_1 \neq 0 \) and \(d_2 \neq 0 \) so that \(d_2 = \alpha d_1 \), for some non-zero \(\alpha \in C \). Define \(F(ax) = f_2(ax) - \alpha f_1(ax) \) and note that \(F : R \to R_C \) and \(F(axa) = F(axa) a \) for all \(a \in R \) and \(x \in \Gamma \). Thus, Lemma 2.13 yields that there exists \(r \in Q_R(R_C) \) such that \(F(axa) = rax \) and therefore \(f_2(ax) = rax + \alpha f_1(ax) \) for all \(a \in R \) and \(x \in \Gamma \). \quad \rightarrow (4)

Using equation (1), we obtain the result for the function

\[[2\alpha f_1(ax) + pax] \alpha d_1(a) + ax[d_1(a)g(a) + \alpha h(a)] = 0 \] where \(g(a) = 2\alpha d_1(a) \) and \(h(a) = (d_1d_2 - d_3)(a) \). Pick \(a \in R \) such that \(d_1(a) \neq 0 \) and apply proposition 2.12 there exists \(p \in Q_R(R_C) \) such that

\[2\alpha f_1(ax) + pax = -ax \gamma. \] This gives us \(f_1(ax) = pax + axq \) where \(p = -(2\alpha)^{-1}p \) and \(q = -(2\alpha)^{-1}q \) for all \(p, q \in Q_R(R_C) \).

Using equation (4), we obtain a similar result for the other function \(f_2(ax) = (r + \alpha p)ax + axq \alpha \). Now we compute the product \(f_1f_2 \) and obtain \(f_3(ax) = f_1[f_2(ax)] = (pr + \alpha p^2)a + aq^2 + (r + 2\alpha p)aq \). Since both the maps \(ax \to (pr + \alpha p^2)ax + axq^2 \alpha \) and \(f_3 \) are generalized derivations. So, is their difference i.e., the map \(ax \to (r + 2\alpha pa)xq \). By using lemma 2.11, we have \((r + 2\alpha pa) \in C \) or \(q \in C \). It is easy to notice that the condition (ii) leads to the condition (iii) of the Theorem. So, we choose \((r + 2\alpha pa) = \beta \in C \). Write \(\gamma = -\alpha \) and \(r = \beta + 2p\gamma \) and we obtain \(f_2(ax) = \beta ax + \gamma(pax - axq) \). Hence, the condition (iv) holds.

Corollary 3.2 Let \(f_1, f_2 : R \to R \) be the generalized derivations. Then, the product \(f_1f_2 = 0 \) if and only if one of the possibilities holds.

(i) either \(f_1 = 0 \) or \(f_2 = 0 \).

(ii) there exists \(p, q \in Q_R(R_C) \) such that \(f_1(axa) = pa \), \(f_2(axa) = qa \) and \(qp = 0 \).

(iii) there exists \(p, q \in Q_R(R_C) \) such that \(f_1(axa) = ap \), \(f_2(axa) = aq \) and \(pq = 0 \).

(iv) there exists \(p, q \in Q_R(R_C) \) and \(\beta, \gamma \in C \) such that \(f_1(axa) = pa + aq \), \(f_2(axa) = \beta a + \gamma(pa - aq) \) and \(\beta p + \gamma p^2 = \gamma q^2 - \beta q \in C \).
Proof: In all cases it is clear that $f_1f_2 = 0$.

To prove the converse, if for f_1 and f_2 are non-zero generalized derivation, one of the conditions of Theorem 3.1 must hold.

The condition (i) of the theorem 3.1 hold, $f_1(axa) = ca$ and $f_2(axa) = ca$ for all $a \in R$, $x \in \Gamma$ and $c \in C$ and therefore either $f_1 = 0$ or $f_2 = 0$.

If the condition (ii) of the Theorem 3.1 hold, there exist $p, q \in Q_R(R_C)$ such that $f_1(axa) = ap$ and $f_2(axa) = qa$. We have $f_3 = f_1f_2(axa) = qpa = 0$ for all $a \in R$ and $x \in \Gamma$ and therefore $qp = 0$.

If the condition (iii) of the Theorem 3.1 hold, there exist $p, q \in Q_R(R_C)$ such that $f_1(axa) = ap$ and $f_2(axa) = qa$. We have $f_3 = f_1f_2(axa) = apq = 0$ for all $a \in R$ and $x \in \Gamma$ and therefore $pq = 0$.

Finally from (iv) of the Theorem 3.1, we have $f_1[f_2(axa)] = (\beta p + \gamma p^2)a + a(\beta q - \gamma q^2) = 0$ for all $a \in R$.

where $\beta p + \gamma p^2 = \gamma q^2 - \beta q \in C$ follow from Lemma 2.11.

Corollary 3.3 Let $f : R \rightarrow R$ be a generalized derivation and $c, d \in C$, if we have $cf(axa) + f(axa)d = 0$ for all $a \in R$, $x \in \Gamma$, then one of the following conditions hold.

(i) $c, d \in C$ and $c + d = 0$.

(ii) $c \in C$ and there exist $p \in Q_R(R_C)$ such that $f(axa) = pa$ and $(c + d)p = 0$.

(iii) $d \in C$ and there exist $p \in Q_R(R_C)$ such that $f(axa) = ap$ and $p(c + d) = 0$.

(iv) there exists $p, q \in Q_R(R_C)$ and $\beta, \gamma \in C$ such that $f(axa) = \beta a + \gamma (pa - aq)$ and $\beta p + \gamma p^2 = \gamma q^2 - \beta q \in C$.

Proof: Define $g(axa) = ca + ad$ for all $a \in R$ and $x \in \Gamma$. So, we have $gf = 0$ according to corollary 3.2, this is possible in one of the four cases. The possibility $g = 0$ is equivalent to $c, d \in C$ and $c + d = 0$. The cases (ii) and (iii) of corollary 3.2 can be easily transformed in case (ii) and (iii) of corollary 3.3. Similarly, the case (iv) of corollary 3.2 gives us $f(axa) = \beta p + \gamma (pa - aq)$. Once we know this, write $cf(axa) + f(axa)d = 0$ and use lemma 2.11 to derive $\beta p + \gamma p^2 = \gamma q^2 - \beta q \in C$.

Corollary 3.4 Let $f : R \rightarrow R$ be a generalized derivation. Then f^2 is a generalized derivation if and only if there exist $a \in Q_R(R_C)$ such that either $f(axa) = ax$, $x \in \Gamma$ or $f(axa) = xa$, $x \in \Gamma$.

Proof: Suppose that f^2 is a generalized derivation by applying theorem 3.1 for $f(axa) = f_1(axa) = f_2(axa)$. The conditions (i) - (iii) of Theorem 3.1 can be unified in saying that f is either left or right multiplication by an element of $Q_R(R_C)$.
References

Received: September, 2010