On Pseudo-Projective and Essentially Pseudo Injective Modules

Ritu Jaiswal and P. C. Bharadwaj

Department of Mathematics
Banaras Hindu University
Varanasi-221005, India
ritu11_bhu@yahoo.com
drpcbharadwaj@yahoo.co.in

Abstract

Pseudo injectivity is a generalization of quasi injectivity. In this paper; certain properties of M-pseudo-injective modules, essentially pseudo injective modules and essentially pseudo stable submodules have been investigated. Dually some results on M-pseudo projective and mutually pseudo projective-modules have been obtained.

Mathematics Subject Classification: 16D40, 16D50

Keywords: Pseudo-Projective modules, essentially pseudo injective modules, essentially pseudo stable submodules

1 Introduction

In this paper the basic ring R is supposed to be ring with unity and all modules are supposed to be unitary left R-modules.

Given two R-modules N and M, N is called M-projective if for every submodule A of M, any homomorphism $\alpha : N \to M/A$ can be lifted to a homomorphism $\beta : N \to M$. A module N is called projective if it is M-projective for every R-module M. On the other hand, N is called quasi-projective if N is N-projective. Recall that an epimorphism $f : M \to N$ is said to split if there exists a homomorphism $g : N \to M$ with $fog = I_N$. A module N is called M-pseudo-projective(or pseudo-projective relative to M) if for every submodule A of M, any epimorphism $\alpha : N \to M/A$ can be lifted to a homomorphism $\beta : N \to M$. Moreover N is called pseudo-projective if N is N-pseudo-projective. Any two modules N and M are called mutually (pseudo-)projective if N is M-(pseudo-)projective and M is N-(pseudo-)projective.
Moreover, we say N is M-pseudo-injective (or pseudo-injective relative to M) if for every submodule A of M, any monomorphism $\alpha : A \to N$ can be extended to a homomorphism $\beta : M \to N$. Any two modules M and N are called relatively (pseudo-)injective if M is N-(pseudo-)injective and N is M-(pseudo-)injective. A module M is said to be essentially pseudo injective if for any module A, any essential monomorphism $g : A \to M$ and monomorphism $f : A \to M$ there exists $h \in \text{End}(M)$ such that $f = hog$.

A submodule T of a module M is said to be essentially pseudo stable if for any essential monomorphism $g : A \to M$ and monomorphism $f : A \to M$ with $\text{Img} + \text{Im}f \subseteq T$, there exists $h \in \text{End}(M)$ such that $f = hog$ then $h(T) \subseteq T$. Let M and N be any two modules then M is said to be essentially pseudo-N-injective if for any essential submodule A of N, any monomorphism $f : A \to M$ can be extended to some $g \in \text{Hom}(N, M)$. If $\alpha \in \text{Hom}_R(M, N)$ then α is called regular if there exists $\beta \in \text{Hom}_R(M, N)$, such that $\alpha \circ \beta \circ \alpha = \alpha$. We call $\text{Hom}_R(M, N)$ regular if every $\alpha \in \text{Hom}_R(M, N)$ is regular. An R-module M is called completely reducible if every submodule of M is a direct summand of M. $P \subseteq \oplus N$ denotes that P is a direct summand of N.

2 Main Results

Proposition 1. (a) If N is M-pseudo-projective module, $P \subseteq \oplus N$ and $Q \subseteq \oplus M$ then any epimorphism $\alpha : Q \to P$ splits.

(b) If N is M-pseudo-projective module and $P \subseteq \oplus N$ then every epimorphism $\alpha : M \to P$ splits.

(c) If N is M-pseudo-projective module, $P \subseteq \oplus N$ and if $\alpha : M \to P$ is epic and $\pi_P : N \to P$ is any projection on P then there exists $\beta : N \to M$ with $\alpha \circ \beta = \pi_P$.

(d) If N is M-pseudo-projective module and S is a submodule of M such that M/S is isomorphic to a direct summand of N then S is a direct summand of M.

Proof. (a) $P \subseteq \oplus N$ implies that P is M-pseudo-projective by [6, Theorem 3.3]. Also $Q \subseteq \oplus M$ implies that P is Q-pseudo-projective by [6, Theorem 3.9]. So by [6, Theorem 3.1] any epimorphism $\alpha : Q \to P$ splits.

(b) $P \subseteq \oplus N$ implies that P is M-pseudo-projective by [6, Theorem 3.3]. So by [6, Theorem 3.1] any epimorphism $\alpha : M \to P$ splits.

(c) By (a) we get $\alpha : M \to P$ splits so there exists $\psi : P \to M$ satisfying $\alpha \circ \psi = I_P$, if we define $\beta = \psi \circ \pi \pi_P$ then $\alpha \circ \beta = \alpha \circ \psi \circ \pi \pi_P = I_P \circ \pi_P = \pi_P$.

(d) Let \(P \subseteq^\oplus N \) such that \(P \) is isomorphic to \(M/S \) and \(\alpha : P \to M/S \) be the corresponding isomorphism. Let \(\pi_P : N \to P \) be the projection map, \(\psi : M \to M/S \) be the natural map. By \(M \)-pseudo-projectivity of \(N \) there exists a homomorphism \(h : N \to M \) such that \(\alpha \circ \pi_P = \psi \circ h \). Let \(\phi : P \to M \) be given by \(\phi = hoJ_P \) and \(g : M/S \to M \) by \(g(x + S) = \phi \circ \alpha^{-1}(x + S) \). Now, \(\psi \circ g = \psi \circ \phi \circ \alpha^{-1} = \psi \circ h \circ \pi_P \circ \alpha^{-1} = \alpha \circ \pi_P \circ J_P \circ \alpha^{-1} = \alpha \circ \alpha^{-1} = I_{M/S}. \) So the sequence \(0 \to S \to M \to M/S \to 0 \) splits, which implies that \(S \) is a direct summand of \(M \).

\(\square \)

Dually we have,

Proposition 2. (a) If \(M \) is \(N \)-pseudo-injective module, \(P \subseteq^\oplus M \) and \(Q \) is any submodule of \(N \) then every monomorphism \(\alpha : P \to Q \) splits.

(b) If \(M \) is \(N \)-pseudo-injective module and \(P \subseteq^\oplus M \) then every monomorphism \(\alpha : P \to N \) splits.

(c) If \(M \) is \(N \)-pseudo-injective module, \(P \subseteq^\oplus M \) and if \(\alpha : P \to N \) is monic and \(i : P \to M \) is the inclusion map, then there exist \(\beta : N \to M \) with \(\beta \circ \alpha = i \).

(d) If \(M \) is \(N \)-pseudo-injective module and \(K \) is a submodule of \(N \) such that \(K \) is isomorphic to a direct summand of \(M \) then \(K \) is a direct summand of \(N \).

Proof. (a) \(P \subseteq^\oplus M \) implies \(P \) is \(N \)-pseudo-injective by [3, Proposition 2.1(4)]. Also \(Q \) is any submodule of \(N \) implies \(P \) is \(Q \)-pseudo-injective by [3, Proposition 2.1(3)]. So by [3, Proposition 2.1(1)] any monomorphism \(\alpha : P \to Q \) splits.

(b) \(P \subseteq^\oplus M \) implies \(P \) is \(N \)-pseudo-injective by [3, Proposition 2.1(4)]. So by [3, Proposition 2.1(1)] any monomorphism \(\alpha : P \to N \) splits.

(c) \(P \subseteq^\oplus M \) implies \(P \) is \(N \)-pseudo-injective by [3, Proposition 2.1(4)]. So \(\alpha : P \to N \) splits by (b), so there exists \(\phi : N \to P \) satisfying \(\phi \circ \alpha = I_P \), if we define \(\beta = i \circ \phi \) then \(\beta \circ \alpha = i \circ \phi \circ \alpha = i \circ I_P = i \).

(d) Let \(P \subseteq^\oplus M \) such that \(P \) is isomorphic to \(K \) and \(\alpha : K \to P \) be the corresponding isomorphism. Let \(J_P : P \to M \) be injection map, \(\psi : K \to N \) be inclusion map. As \(M \) is \(N \)-pseudo-injective there exists homomorphism \(h : N \to M \) such that \(J_P \circ \alpha = h \circ \psi \). Define \(\phi : N \to K \) by \(\phi = \alpha^{-1} \circ \pi_P \circ h \). Now \(\phi \circ \psi = \alpha^{-1} \circ \pi_P \circ h \circ \psi = \alpha^{-1} \circ \pi_P \circ J_P \circ \alpha = \alpha^{-1} \circ \alpha = I_K \). So \(K \) is a direct summand of \(N \).

\(\square \)
Proposition 3. If M and N are mutually pseudo-projective modules, P is a direct summand of N and Q is a direct summand of M then P and Q are mutually pseudo-projective.

Proof. Let N be M-pseudo-projective and $Q \subseteq \oplus M$, which implies that N is Q-pseudo-projective and $N = P \oplus P'$. Let Q' be a submodule of Q and $f : P \rightarrow Q/ Q'$ be any epimorphism. Define epimorphism $g : N \rightarrow Q/Q'$ by $g = f o \pi_P$, where π_P is the natural projection of N onto P. Then $g(a,b) = f o \pi_P(a,b) = f(a) \forall a \in P, b \in P'$. As N is Q-pseudo-projective there is $g^* : P \oplus P' \rightarrow Q$ lifting g. Then $f^* = g^*/P$ is a homomorphism which lifts f. So P is Q-pseudo-projective. Similarly we can show that Q is P-pseudo-projective. Thus P and Q are mutually pseudo-projective. □

Dually we have,

Proposition 4. If M and N are relatively pseudo-injective modules, P is a direct summand of M and Q is a direct summand of N then P and Q are relatively pseudo-injective.

Proposition 5. If $M = P \oplus N$ is pseudo projective then $P \oplus N$ is P-pseudo-projective as well as N-pseudo-projective.

Proof. Let $f : M \rightarrow P/X$ be any epimorphism where X is a submodule of P, $\pi_P : M \rightarrow P$ be the projection map and $\nu : P \rightarrow P/X$ be the natural map. Then by pseudo projectivity of M there exists $h : M \rightarrow M$ which lifts f. Then the mapping $\psi = \pi_P h : M \rightarrow P$ lifts f, which implies M is P-pseudo-projective. Similarly we can show that M is N-pseudo-projective. □

Proposition 6. If $P \oplus N$ is pseudo projective then P and N are mutually pseudo-projective.

Proof. We first show P is N-pseudo-projective. Let X be a submodule of N, $f : P \rightarrow N/X$ be an epimorphism. Define $g : P \oplus N \rightarrow N/X$ by $g = f o \pi_P$, where π_P is the projection on P then $g(p,n) = f o \pi_P(p,n) = f(p)$ for $p \in P, n \in N$. Let $\nu : N \rightarrow N/X$ be the natural map. As $P \oplus N$ is pseudo projective, we get by Proposition(5) that $P \oplus N$ is N-pseudo-projective. So $\exists g^* : P\oplus N \rightarrow N$ lifting g. Then $f^* = g^*/P$ is a homomorphism which lifts f. So P is N-pseudo-projective. Similarly we can show that N is P-pseudo-projective. So N and P are mutually pseudo-projective. □

Corollary(6.1): If $\oplus_{i \in I} M_i$ is pseudo projective, then M_j is M_k-pseudo-projective for all distinct $j, k \in I$.

Proof. Straight forward from Proposition 6. □
Proposition 7. Let N and M be mutually pseudo-projective modules and A be any submodule of N such that N/A is isomorphic to a direct summand of M, then A is a direct summand of N.

Proof. Follows from Proposition 1(d) with suitable changes.

Corollary 7.1 Let N and M be mutually pseudo-projective modules and A be any submodule of N such that N/A is isomorphic to a direct summand of M, then A is also M-pseudo-projective.

Proof. From Proposition 7, we get A is a direct summand of N which clearly implies that A is M-pseudo-projective by [6, Proposition 3.3].

Proposition 8. If N is M-pseudo-projective module and $\alpha(M) \subseteq^\oplus N$ for every $\alpha \in \text{Hom}_R(M, N)$ then $\ker(\alpha) \subseteq^\oplus M$.

Proof. Let $\alpha \in \text{Hom}_R(M, N)$ then $M/\ker(\alpha)$ is isomorphic to $\alpha(M)$ and $\alpha(M) \subseteq^\oplus N$. Since N is M-pseudo-projective module, so by Proposition 1(d) we get, $\ker(\alpha)$ is a direct summand of M.

Dually we have,

Proposition 9. Let M is N-pseudo-injective module and $\ker(\alpha) \subseteq^\oplus M$ for every $\alpha \in \text{Hom}_R(M, N)$ then $\alpha(M) \subseteq^\oplus N$.

Proposition 10. If N is M-pseudo-projective module and $\alpha(M) \subseteq^\oplus N$ for every $\alpha \in \text{Hom}_R(M, N)$ then $\text{Hom}_R(M, N)$ is regular.

Dually we have,

Proposition 11. If M is N-pseudo-injective module and $\ker(\alpha) \subseteq^\oplus M$ for every $\alpha \in \text{Hom}_R(M, N)$ then $\text{Hom}_R(M, N)$ is regular.

Corollary 11.1: Let $[M, N] = \text{hom}_R(M, N)$ then $[M, N]$ is regular if
(a) N is M-pseudo-projective and N is completely reducible.
(b) M is N-pseudo-injective and M is completely reducible.

Proposition 12. Let M be an essentially pseudo injective module and $\phi : N \to M$ be an essential monomorphism. Then there exists a monomorphism g in $\text{End}(M)$ extending ϕ such that $\text{Im} g$ is stable under g.

Proof. Follows from [2, Proposition 5].
We know that a N-pseudo-injective module is essentially pseudo-N-injective but converse is not true in general by [1, Example 1]. Here we mention a condition under which an essentially pseudo-N-injective module is N-pseudo-injective.

Proposition 13. For a uniform module N the following conditions are equivalent:

(a) M is N-pseudo-injective

(b) M is essentially pseudo-N-injective.

Proof. (a)\Rightarrow(b) follows from the definition.

(b)\Rightarrow(a)

Let M be an essentially pseudo-N-injective module, A be any submodule of N. Let $f : A \rightarrow M$ be any monomorphism and $\alpha : A \rightarrow N$ be the inclusion map. N being uniform implies α is an essential monomorphism. Since M is essentially pseudo-N-injective $\exists h \in Hom(N,M)$ such that $f = ho\alpha$. Hence M is N-pseudo-injective.

Proposition 14. Let $(T_i)_{i \in I}$ be a family of essentially pseudo stable submodules of an R-module M then $\bigcap_{i \in I} T_i$ is also essentially pseudo stable.

Proof. Follows from [2, Proposition 6].

Proposition 15. Let M be an essentially pseudo injective module and N be an essential submodule of M stable under monomorphisms of $End(M)$ then N is essentially pseudo stable submodule of M.

Proof. Follows from [2, Theorem 10].

We now mention here a well known lemma which is dual of well known Homomorphism decomposition theorem:

Lemma 16: Let A, B, C be modules and let $f : A \rightarrow B$ be a monomorphism and $g : C \rightarrow B$ be a homomorphism such that $Img \subseteq Imf$, then there exists a unique homomorphism $h : C \rightarrow A$ such that $g = foh$.

Proposition 17: Let M be an essentially pseudo injective module and K be an essential submodule of M, then K is essentially pseudo injective if K is stable under endomorphisms of M.
Proof. Let $f : A \to K$ be an essential monomorphism, $g : A \to K$ be monomorphism and $\nu : K \to M$ be the inclusion map. Then by the essential pseudo injectivity of M there exists $\psi \in \text{End}(M)$ such that $\nu g = \psi o \nu f$. Since K is stable under $\text{End}(M)$, we have $\psi(K) \subseteq K$. Replacing K by $\nu(K)$ we have $\psi o (K) \subseteq (K) \Rightarrow \text{Im}(\psi o) \subseteq \text{Im}(\nu)$. So by Lemma 16 there exists $\alpha \in \text{End}(K)$ such that $\psi o \nu = \nu o \alpha$. Since $\nu g = \psi o \nu f = \nu o \alpha f$ it implies that $g = \alpha o f$. Hence K is essentially pseudo injective.

Proposition 18: If M is an essentially pseudo injective module and $\phi : N \to M$ is any essential monomorphism then $I = \text{Im}\phi$ is an essentially pseudo stable submodule of M.

Proof. The monomorphism $\phi : N \to M$ induces an isomorphism $\phi^* : N \to \phi(N)$. Let $f : \phi(N) \to M$ be the inclusion map, then $\text{Im}(f) + \text{Im}(f\phi^*) \subseteq I$. As M is essentially pseudo injective $\exists g \in \text{End}(M)$ such that $f o \phi^* = g o \phi$. Now, let $g(I) \not\subseteq I$, then there exists at least one $i \in I$ such that $g(i) \in g(I)$ and $g(i) \not\in I$, but $i \in I$ implies that $i \in \phi(N)$. So we have $\phi(n) = i$ for some $n \in N \Rightarrow g(\phi(n)) \not\in I \Rightarrow g o \phi(n) \not\in I \Rightarrow f o \phi^*(n) \not\in I \Rightarrow f o \phi^*(n) \not\in \text{Im}(\phi)$ which is a contradiction, since $\text{Im}(f o \phi^*) \subseteq I$. Thus $g(I) \subseteq I \Rightarrow I = \text{Im}\phi$ is an essentially pseudo stable submodule of M.

References

Received: August, 2010