On Galois Extensions for Separable Group Rings

George Szeto
Department of Mathematics
Bradley University
Peoria, Illinois 61625, USA
szeto@bradley.edu

Lianyong Xue
Department of Mathematics
Bradley University
Peoria, Illinois 61625, USA
lxue@bradley.edu

Abstract

Let R be a ring with 1, G a group, and RG a group ring with center C. Assume RG is an Azumaya C-algebra. Then the inner automorphism group G of RG induced by the elements of G is finite, and RG is not a Galois extension of $(R)G$ with Galois group G. For a proper subgroup K of G with an invertible order, the following are equivalent:

1. RG is a Galois extension of $(R)K$ with Galois group K;
2. RG is a projective right $(R)K$-module and the centralizer of $(R)K$ is $\oplus \sum_{\gamma \in \mathbb{K}} J_{\gamma}$ where $J_{\gamma} = \{a \in R \mid ax = \gamma(x)a \text{ for each } x \in R\}$; and
3. $\{g \in G \mid g \text{ is a representative of } \gamma \in \mathbb{K}\}$ are linearly independent over C. Moreover, we call $f : \mathbb{K} \longrightarrow (R)K$ the Galois map from the set of subgroups of G to the set of subalgebras of RG. Then f is one-to-one from a set of Galois groups \mathbb{K} of RG to the set of separable subalgebras $(R)K$ of RG.

Mathematics Subject Classification: 16S35, 16W20

Keywords: Galois extensions, Group rings, separable extensions, Azumaya algebras

1 Introduction

Let R be a ring with 1, G a group, and RG a group ring. F. R. DeMeyer and G. J. Janusz ([3], Theorem 1) studied an Azumaya group ring RG. When
R is a field and G is a finite group of a nonzero order in R. K. Hirata ([5], Proposition 6) proved that for a subgroup K of G, RG is a Hirata separable extension of the double centralizer of RK in RG. This fact was extended to any Azumaya group ring RG ([12], Lemma 4.2). In the present paper, we study some problems for Galois extensions in RG. Let \mathcal{G} be the inner automorphism group of RG induced by the elements of G. Then \mathcal{G} is a finite group. We shall show that RG is not a Galois extension of $(RG)^{\mathcal{G}}$ with Galois group \mathcal{G} where $(RG)^{\mathcal{G}}$ is the subring of the elements fixed under each element in \mathcal{G}. Moreover, let B be a proper subgroup of \mathcal{G} with an invertible order in R. We shall show the following equivalent conditions: (1) RG is a Galois extension of $(RG)^{\mathcal{G}}$, with Galois group \mathcal{G}; (2) RG is a projective right $(RG)^{\mathcal{G}}$-module and the centralizer of $(RG)^{\mathcal{G}}$ is $\oplus \sum_{\eta \in \mathcal{K}} J_{\eta}$ where $J_{\eta} = \{a \in RG \mid ax = \eta(x)a \text{ for each } x \in RG\}$; and (3) Let A be a set of representatives of elements of \mathcal{K} in G. Then the elements in A are linearly independent over C where C is the center of RG. Let \mathcal{K} be a subgroup of \mathcal{G}, we call $f : \mathcal{K} \rightarrow (RG)^{\mathcal{G}}$ the Galois map from the set of subgroups of \mathcal{G} to the set of subalgebras of RG over C. Then f is one-to-one from a set of Galois groups \mathcal{K} as given in the equivalent conditions to the set of separable subalgebras of RG.

2 Basic Definitions and Notations

Let B be a ring with 1 and A a subring of B with the same identity 1. Then B is called a separable extension of A if there exist $\{a_i, b_i \in B, i = 1, 2, ..., k \}$ for some integer k such that $\sum a_i b_i = 1$ and $\sum x a_i \otimes b_i = \sum a_i \otimes b_i x$ for all x in B where \otimes is over A. In particular, B is called an Azumaya algebra if it is a separable extension over its center. A ring B is called a Hirata separable extension of A if $B \otimes_A B$ is isomorphic to a direct summand of a finite direct sum of B as a B-bimodule. For more about Azumaya algebras and Hirata separable extensions, see [7] and [11]. Let G be a finite automorphism group of B and $B^G = \{x \in B \mid g(x) = x \text{ for all } g \in G\}$. Then B is called a Galois extension of B^G with Galois group G if there exist elements $\{c_i, d_i \in B, i = 1, 2, ..., m \}$ for some integer m such that $\sum c_i d_i = 1$ and $\sum c_i g(d_i) = 0$ for each $g \neq 1$ in G, and $\{c_i, d_i \}$ is called a G-Galois system for B ([1]). A Galois extension B of B^G is called a Galois algebra if B^G is contained in the center of B, and a central Galois algebra if B^G is equal to the center of B ([9], [10]). The order of a group G is denoted by $|G|$. For a subring A of B, we denote by $V_B(A)$ the centralizer (also called commutator) subring of A in B. As given in [1], let R be a commutative ring with 1, and G a finite group. Then $\oplus \sum_{g \in G} RU_g$ is called a projective group algebra of G over R if $U_g U_h = f(g, h) U_{gh}$ for $g, h \in G$ and $f : G \times G \rightarrow \{\text{units of } R\}$ is a factor set.
3 Galois Extensions

Let R be a ring with 1, G a group, and RG the group ring of G over R with center C. Assume RG is an Azumaya C-algebra. We shall show that RG is not a Galois extension of $(RG)^G$ with Galois group G where G is the inner automorphism group of RG induced by the elements of G. Moreover, let K be a proper subgroup of G with an invertible order in R. We shall characterize a Galois extension RG of $(RG)^K$ with Galois group K. Throughout this section, RG is an Azumaya C-algebra, and G is the inner automorphism group of RG induced by the elements of G. We note that the order $|G|$ of G is finite ([3], Theorem 1). We begin with a lemma.

Lemma 3.1 Let R_0 be the center of R. Then RG is a Galois extension of $(RG)^G$ with Galois group G if and only if R_0G is a Galois extension of $(R_0G)^G$ with Galois group G.

(Proof. (\iff) Since R_0G is a Galois extension of $(R_0G)^G$ with Galois group G restricted to R_0G, the Galois system for R_0G is also a Galois system for RG with Galois group G isomorphic with G restricted to R_0G. Thus RG is a Galois extension of $(RG)^G$ with Galois group G.

(\Rightarrow) By hypothesis, RG is a Galois extension of $(RG)^G$ with Galois group G, so the crossed product with trivial factor set of G over RG, $\Delta(RG, G) \cong \text{Hom}_{(RG)^G}(RG, RG)$ ([1], Theorem 1). But RG is an Azumaya C-algebra, so $RG \cong R \otimes_{R_0} R_0G \cong (R \otimes_{R_0} C) \otimes_C R_0G$ where C is also the center of R_0G. Since R is an Azumaya R_0-algebra ([3], Theorem 1), $R \otimes_{R_0} C$ is an Azumaya C-algebra and $R \otimes_{R_0} C \cong RC$. Thus $\Delta(RG, G) \cong \Delta(RC \otimes_C R_0G, G) \cong \text{Hom}_{(RG)^G}(RC \otimes_C R_0G, RC \otimes_C R_0G)$. Next, $(RG)^G$ is the centralizer of R_0G in RG, so $(RG)^G = RG$. This implies that $\Delta(RG, G) \cong \text{Hom}_{RG}(RC \otimes_C R_0G, RC \otimes_C R_0G)$. Noting that $\Delta(RG, G) \cong RC \otimes_C \Delta(R_0G, G)$ by the multiplication map, we have that $RC \otimes_C \Delta(R_0G, G) \cong RC \otimes_C \text{Hom}_C(R_0G, R_0G)$ as Azumaya C-algebras. Therefore $\Delta(R_0G, G) \cong \text{Hom}_C(R_0G, R_0G)$ by the commutator theorem for Azumaya algebras ([2], Theorem 4.3, page 57). Noting that $(R_0G)^G = C$ which is the center of the Azumaya algebra R_0G, we conclude that R_0G is a Galois extension of $(R_0G)^G$ with Galois group G restricted to R_0G ([1], Theorem 1).

By Lemma 3.1, we can assume that R is commutative to show that RG is not a Galois extension of $(RG)^G$ with Galois group G.

Theorem 3.2 Let R be a commutative ring with 1, G a nonabelian group, and RG a group ring RG. If RG is an Azumaya C-algebra, then RG is not a Galois extension of $(RG)^G$ with Galois group G.}
Thus RG is a Galois extension of $(RG)^G$ with Galois group G. Then, RG is a central Galois algebra over C with an inner Galois group G. Hence $RG = CG_f$ which is a projective group algebra of G over C ([1], Theorem 6). Thus $\text{rank}_{R}(RG) = |G|$, the order of G. Since $C = \oplus RO_i$ where O_i is the sum of the distinct elements in the ith orbit of G under the inner automorphism of the elements of G, RZ is a direct summand of C where Z is the center of G. Hence for some prime ideal p of RZ, C_p is a free $(RZ)_p$-module of rank greater than 1, that is, $\text{rank}_{(RZ)_p}(C_p) > 1$ because G is a nonabelian group. But RG is also a free RZ-module of rank $|G/Z|$, so $\text{rank}_{RZ}(RG) = \text{rank}_{C}(RG) \cdot \text{rank}_{(RZ)_p}(C_p)$ implies that $|G/Z| = |G/Z| \cdot \text{rank}_{(RZ)_p}(C_p)$. Thus $\text{rank}_{(RZ)_p}(C_p) = 1$. This is a contradiction. Therefore RG is not a Galois extension of $(RG)^G$ with Galois group G.

By keeping the notations in Theorem 3.2, let K be a proper subgroup of G with an invertible order in R. Next we characterize the Galois extension RG of $(RG)^K$ with Galois group K.

Theorem 3.3 Let K be a proper subgroup of G with an invertible order in R. Then the following statements are equivalent: (1) RG is a Galois extension of $(RG)^K$ with Galois group K; (2) RG is a projective right $(RG)^K$-module and the centralizer of $(RG)^K$ is $\oplus \sum_{\overline{g} \in K} J_{\overline{g}}$ where $J_{\overline{g}} = \{a \in RG \mid ax = \overline{g}(x)a \}$ for each $x \in RG$; and (3) Let $A = \{g \in G \mid \overline{g} \in K\}$ be a set of representatives of elements of K. Then the elements in A are linearly independent over C where C is the center of RG.

Proof. (1) \implies (2) Since RG is a Galois extension of $(RG)^K$ with Galois group K, RG is a projective right $(RG)^K$-module ([1], Theorem 1), and the centralizer of $(RG)^K$ is $\oplus \sum_{\overline{g} \in K} J_{\overline{g}}$ ([6], Proposition 1).

(2) \implies (1) By hypothesis, RG is a projective right $(RG)^K$-module where RG is an Azumaya algebra, so RG is a Hirata separable extension of $(RG)^K$ ([4], Theorem 1). Hence RG is a finitely generated right $(RG)^K$ by the general Zelinsky-Rosenberg theorem as given in [13]. Moreover, $(RG)^K$ is a direct summand of RG as a $(RG)^K$-bimodules ([12], Lemma 4.2), so $(RG)^K$ is a separable subalgebra of RG by the proof of Theorem 3.8 on page 55 in [2]. Thus $(RG)^K$ is the double centralizer of itself ([2], Theorem 4.3, page 57). Now by hypothesis, the centralizer of $(RG)^K$ is $\oplus \sum_{\overline{g} \in K} J_{\overline{g}}$, so RG is a Galois extension of $(RG)^K$ with Galois group K ([7], Proposition 1-(2)).

(2) \implies (3) By the proof of (2) \implies (1), RG is a Hirata separable extension of $(RG)^K$ and a Galois extension of $(RG)^K$ with Galois group K. Hence $J_{\overline{g}}$ is a
projective C-module of rank 1 for each $\overline{g} \in \overline{K}$ ([7], Theorem 2). Since $Cg = J_{\overline{g}}$ where $g \in G$ such that $\overline{g} \in \overline{K}$, $\{g \in G \mid \overline{g} \in \overline{K}\}$ are linearly independent over C.

(3) \implies (2) Since $\{g \in G \mid \overline{g} \in \overline{K}\}$ are linearly independent over C, $\oplus \sum Cg = C\overline{K}_f$ is a projective group algebra of \overline{K} over C with a factor set $f : \overline{K} \times \overline{K} \to \{\text{units of } C\}$. But the order of \overline{K} is a unit in C, so $C\overline{K}_f$ is a separable subalgebra of RG. Hence $(RG)\overline{K} (= V_{RG}(C\overline{K}_f)$, the centralizer of $C\overline{K}_f$ in RG) is also a separable subalgebra of RG. Thus RG is a projective right $(RG)\overline{K}$-module by the lifting property of a projective module over a separable algebra ([2], Proposition 2.3, page 48). Moreover, since $C\overline{K}_f$ is a separable subalgebra of the Azumaya algebra RG, $C\overline{K}_f$ is the double centralizer of itself ([2], Theorem 4.3, page 57). Hence $C\overline{K}_f$ is the centralizer of $(RG)\overline{K}$. Thus the centralizer of $(RG)\overline{K}$ is $\oplus \sum_{\overline{g} \in \overline{K}} J_{\overline{g}}$ because $J_{\overline{g}} = Cg$ for each $\overline{g} \in \overline{K}$.

As given in [8], a Galois extension B of B^G with Galois group G is called a commutator Galois extension with Galois group G if the centralizer $V_B(B^G)$ of B^G in B is a Galois extension of $(V_B(B^G))^G$ with Galois group $G|_{V_B(B^G)} \cong G$.

Corollary 3.4 Assume RG satisfy an equivalent condition in Theorem 3.3. Then RG is a commutator Galois extension with Galois group \overline{K} if and only if the center of $C\overline{K}_f$ is C.

Proof. By the proof of Theorem 3.3, $C\overline{K}_f$ is the centralizer of $(RG)\overline{K}$ and $C\overline{K}_f$ is a projective group algebra of \overline{K} over C. Noting that $C\overline{K}_f$ is a separable C-algebra, we have that $C\overline{K}_f (= V_{RG}((RG)\overline{K}))$ is an Azumaya C-algebra if and only if $C\overline{K}_f$ is a Galois extension with Galois group induced by and isomorphic with \overline{K} ([1], Theorem 6).

Corollary 3.5 Assume RG satisfy an equivalent condition in Theorem 3.3 and \overline{L} a subgroup of \overline{K} such that $\overline{L} = \{\overline{g} \in \overline{K} \mid \overline{g}(a) = a \text{ for each } a \in C\overline{K}\}$. Then \overline{L} is the center of \overline{K} and RG is a Galois and Hirata separable extension of $(RG)\overline{L}$ with Galois group \overline{L}.

Proof. Clearly, \overline{L} is the center of \overline{K}. By Theorem 3.3, since RG is a Galois and Hirata separable extension of $(RG)\overline{K}$, RG is a Galois and Hirata separable extension of $(RG)\overline{L}$ ([7], Theorem 6-(1)).

4 The Galois Map

Let RG be an Azumaya C-algebra and \overline{K} a subgroup of \overline{G}. As studied in [9] and [10], we call the map $f : \overline{K} \to (RG)\overline{K}$ the Galois map from the set
of subgroups of \mathcal{G} to the set of subalgebras of RG. Then f induces a map $F : C\overline{K}_f \rightarrow (RG)\overline{K} (= V_{RG}(C\overline{K}_f))$. We shall show that (1) F is one-to-one from the set of separable subalgebras $C\overline{K}_f$ to the set of separable subalgebras of RG, and (2) f is one-to-one from the group of subgroups \mathcal{K} with closed set product such that $|\mathcal{K}|^{-1} \in R$ and RG is a Galois extension of $(RG)\overline{K}$ to the set of separable subalgebras of RG as given in Theorem 3.3, that is, f is one-to-one from the group of Galois subgroups \overline{K} of \mathcal{G} with set product to the set of separable subalgebras of RG as given in Theorem 3.3.

Theorem 4.1 Let RG be an Azumaya C-algebra and \mathcal{K} a subgroup of \mathcal{G}. Let $\mathcal{C} = \{C\overline{K}_f | C\overline{K}_f$ is a separable subalgebra of $RG\}$ and \mathcal{S} the set of separable subalgebras of RG. Then $F : C\overline{K}_f \rightarrow (RG)\overline{K} (= V_{RG}(C\overline{K}_f))$ is one-to-one from \mathcal{C} to \mathcal{S}.

Proof. Let \overline{K} and \overline{H} be subgroups of \mathcal{G} such that $C\overline{K}_f$ and $C\overline{H}_f'$ are separable subalgebra of RG and $F(C\overline{K}_f) = F(C\overline{H}_f')$. Then $V_{RG}(C\overline{K}_f) = (RG)\overline{K} = F(C\overline{K}_f) = F(C\overline{H}_f') = (RG)\overline{H} = V_{RG}(C\overline{H}_f')$. But $C\overline{K}_f$ and $C\overline{H}_f'$ are separable subalgebra of the Azumaya algebra RG, so $C\overline{K}_f = C\overline{H}_f'$ by the commutator theorem for Azumaya algebras ([2], Theorem 4.3, page 57). Thus F is one-to-one from \mathcal{C} to \mathcal{S}.

We call the subgroup \overline{K} a Galois group of RG as given in Theorem 3.3 if $|\overline{K}|^{-1} \in R$ and RG is a Galois extension of $(RG)\overline{K}$, and the group of Galois subgroups of \mathcal{G} with set product is denoted by \mathcal{D}.

Theorem 4.2 Let $f : \overline{K} \rightarrow (RG)\overline{K}$ from a Galois group \overline{K} in \mathcal{D} to $(RG)\overline{K}$ in \mathcal{S}. Then f is one-to-one from \mathcal{D} to \mathcal{S}.

Proof. By Theorem 3.3, $\{g \in G | \overline{g} \in \overline{K}\}$ are linearly independent over C, so $C\overline{K}_f (= \oplus \sum Cg)$ is a projective group algebra of \overline{K} over C. Now let \overline{K} and \overline{H} be two Galois groups in \mathcal{D} such that $f(\overline{K}) = f(\overline{H})$. Then $C\overline{K}_f$ and $C\overline{H}_f'$ are projective group algebras. Since $|\overline{K}|^{-1}$ and $|\overline{H}|^{-1}$ are in R, $C\overline{K}_f$ and $C\overline{H}_f'$ are separable subalgebra of RG. Hence $C\overline{K}_f = C\overline{H}_f'$ by Theorem 4.1; and so $\overline{K} = \overline{H}$. Thus f is one-to-one from \mathcal{D} to \mathcal{S}.

ACKNOWLEDGEMENTS. This paper was written under the support of a Caterpillar Fellowship at Bradley University. The authors would like to thank Caterpillar Inc. for the support.

References

Received: August, 2010