Common Fixed Point Theorem for Two, Three and Four Maps in Fuzzy Metric Spaces

Yogesh Kumar Vijaywar

Department of Mathematics
Govt. J.S.T. P.G.College, Balaghat (M.P.) India PIN 481001
Ward No.4, Balaghat Road, Waraseoni Distt. Balaghat, India PIN 481331
yogesh_vijaywar@yahoo.com

N. P. S. Bawa

Department of Mathematics
Govt. P.G. Science College, Rewa (M.P.)
653/12, Bajarang Nagar, Urrahat, Rewa (M.P.) India PIN 486001
e-mail : promptbawa@yahoo.com

Praveen Kumar Shrivastava

Department of Mathematics
Govt. J.S.T. P.G.College, Balaghat (M.P.)
Ward No.6, Behind Jaihind Takij, Balaghat, India PIN 481001
pspraveenshrivastava@yahoo.co.in

D. P. Shukla

Department of Mathematics
Govt. P.G. Science College, Rewa (M.P.) India PIN 486001
shukladpmp@gmail.com
Rahul Tiwari
Kanha Coaching, Behind Bari Dargah Amahiya Rewa (M.P.)
PIN 486001, India
tiwari.rahul.rewa@gmail.com

Abstract

In this paper we have tried to prove the existence of common fixed point for a pair of self mapping under strict contractive and occasionally weakly compatibility condition under the concept of fuzzy metric space. Also we have proved, common fixed point theorem without completeness and E-A property for a pair, triplet and quadruplet of self mappings in fuzzy metric space. The results improve Vijayraju and Sajath [17].

Mathematics Subject Classification: 47H10, 54H25, 54A40, 54E99

Keywords: Weak compatibility, Fuzzy, Metric space, common fixed point, Occasionally weakly compatibility

1. Introduction

In 1982, Sessa [15] introduced the concept of weakly commuting mappings which extends the notion of commuting mappings.

After 4 years, Jungck [6] defined compatible mappings as an extension of weakly commuting mappings.

Later on, the same author with Murthy and Cho [7] gave another extension of weakly commuting mappings under the name of compatible mappings of type (A).

Again, Pathak and Khan [13] extended compatible of type (A) mappings to compatible mappings of type (B).

On this direction, Pathak et al., [14] introduced the new concept as compatible type of (C) as an another extension of compatible type of (A) and proved a common fixed point theorem in a Banach space.
In their paper [8], Jungck and Rhoades defined the notion of weakly compatible mappings as an extension of all the results of above all them.

Again recently, Al-Thagafi and Shahzad [2] generalized the results of above authors by excluding the concept weakly compatible mappings to occasionally weakly compatible mappings.

In this paper we have extended the results of Vijayraju P and Sajath Z M.I. [17] in more general space fuzzy metric space and establish the existence of common fixed point for a pair, triplet and quadruplet of self mapping.

2. Preliminaries

Definition 2.1 Self mappings f and g of a metric space (X, d) are said to be weakly commuting pair if,
$$d(fgx, gfx) \leq d(fx, gx).$$
for all $x \in X$

Definition 2.2 Self mappings f and g of a metric space (X, d) are said to be compatible if,
$$\lim_{n \to \infty} d(fgx_n, gfx_n) = 0.$$
whenever $\{x_n\}$ is a sequence in X such that
$$\lim_{n \to \infty} fx_n = \lim_{n \to \infty} gx_n = t$$
for some $t \in X$.

Definition 2.3 Self mappings f and g of a metric space (X, d) are said to be compatible of type (A) if,
$$\lim_{n \to \infty} d(fgx_n, g^2x_n) = 0 \quad \text{and} \quad \lim_{n \to \infty} d(gfx_n, f^2x_n) = 0,$$
whenever $\{x_n\}$ is a sequence in X such that
$$\lim_{n \to \infty} fx_n = \lim_{n \to \infty} gx_n = t$$
for some $t \in X$.

Definition 2.4 Self mappings f and g of a metric space (X, d) are said to be compatible of type (B) if,
$$\lim_{n \to \infty} d(fgx_n, g^2x_n) \leq \frac{1}{2} \left[\lim_{n \to \infty} d(fgx_n, ft) + \lim_{n \to \infty} d(ft, f^2x_n) \right]$$
and
\[\lim_{n \to \infty} d(fgx_n, f^2x_n) \leq \frac{1}{2} \left[\lim_{n \to \infty} d(gfx_n, gt) + \lim_{n \to \infty} d(gt, g^2x_n) \right] \]

whenever \(\{x_n\} \) is a sequence in \(X \) such that
\[\lim_{n \to \infty} f_{x_n} = \lim_{n \to \infty} g_{x_n} = t \]
for some \(t \in X \).

Definition 2.5 Self mappings \(f \) and \(g \) of a metric space \((X, d) \) are said to be compatible of type (C) if,
\[\lim_{n \to \infty} d(fgx_n, g^2x_n) \leq \frac{1}{3} \left[\lim_{n \to \infty} d(fgx_n, ft) + \lim_{n \to \infty} d(ft, f^2x_n) + \lim_{n \to \infty} d(ft, g^2x_n) \right] \]
and
\[\lim_{n \to \infty} d(gfx_n, f^2x_n) \leq \frac{1}{3} \left[\lim_{n \to \infty} d(gfx_n, gt) + \lim_{n \to \infty} d(gt, g^2x_n) + \lim_{n \to \infty} d(gt, f^2x_n) \right] \]
whenever \(\{x_n\} \) is a sequence in \(X \) such that
\[\lim_{n \to \infty} f_{x_n} = \lim_{n \to \infty} g_{x_n} = t \]
for some \(t \in X \).

Definition 2.6 Self mappings \(f \) and \(g \) of a metric space \((X, d) \) are said to be weakly compatible if they commute at their coincidence points.

Definition 2.7 Two self mappings \(f \) and \(g \) of a set \(X \) are occasionally weakly compatible (shortly (owc)) iff, there is a point \(t \) in \(X \) which is a coincidence point of \(f \) and \(g \) at which \(f \) and \(g \) commute.

Definition 2.8 A binary operation \(* : [0, 1] \times [0, 1] \to [0, 1] \) is called a continuous t norm if \(([0,1] , *) = 0 \) is an abelian topological monoid with unit 1 such that \(a * b \leq c * d \) whenever \(a \leq c \) and \(b \leq d \) for all \(a, b, c, d \in [0,1] \).
Examples : t-norms are \(a * b = ab \) and \(a * b = \min\{a,b\} \)

Definition 2.9[4] The three tuple \((X, M, *) \) is called a fuzzy metric space, if \(X \) is an arbitrary set, \(* \) is a continuous t-norm and \(M \) is a fuzzy set in \(X^2 \times [0, \infty] \) satisfying the following condition : for all \(x, y, z \) in \(X \) and \(s, t > 0 \).
Common fixed point theorem

(i) $M(x, y, 0) = 0$.
(ii) $M(x, y, t) = 1$, for all $t > 0$, if and only if $x = y$.
(iii) $M(x, y, t) = M(y, x, t)$
(iv) $M(x, y, t) * M(y, z, s) \leq M(x, z, t + s)$
(v) $M(x, y, .) : [0, \infty) \rightarrow [0, 1]$ is left continuous.
(vi) $\lim_{t \to \infty} M(x, y, t) = 1$.

Lemma 2.10 [5] $M(x, y, .)$ is non-decreasing for all x, y in X.

Lemma 2.11 [12] Let $\{x_n\}$ be a sequence in fuzzy metric space $(X, M, *)$ with $t * t \geq t$ for all $t \in [0,1]$ and condition (vi). If there exists a number $q \in (0,1)$ such that

$M(x_{n+2}, x_{n+1}, qt) \geq M(x_{n+1}, x_n, t)$

for all $t > 0$ and $n = 1, 2, \ldots$ then $\{x_n\}$ is a Cauchy sequence in X.

Lemma 2.12 [12] If for all $x, y \in X$, $t > 0$ with positive number $q \in (0,1)$ and $M(x, y, qt) \geq M(x, y, t)$ then $x = y$.

Definition 2.13 Two self mappings S and T of a fuzzy metric space are said to be commuting if $M(STx, TSx, t) = 1$ for all $t > 0$ and for all $x \in X$.

Definition 2.14 Two self mappings S and T of a fuzzy metric space are said to be commuting if $M(STx, TSx, t) \geq M(Sx, Tx, t)$ for all $t > 0$ and for all $x \in X$.

Clearly two commuting mappings are weakly commuting.

Definition 2.15 Let T and S be two self mappings of a fuzzy metric space $(X, M, *)$. Then S and T are said to be compatible if $\lim_{n \to \infty} M(STx_n, TSx_n, t) = 1$ whenever $\{x_n\}$ is a sequence in X such that $\lim_{n \to \infty} Sx_n = \lim_{n \to \infty} Tx_n = x_0$.

Obviously two weakly commuting mappings are compatible.

Definition 2.16 Let Two self mappings T and S of a fuzzy metric space $(X, M, *)$. Then S and T are said to be weakly compatible if they commute at their
coincidence points; i.e.; if $M(Tu, Su, t) = 1$ implise $M(TSu, STu, t) = 1$ for $t > 0$.

It is easy to see that two compatible maps are weakly compatible.

Definition 2.17 Let Two self mappings T and S of a fuzzy metric space (X, M, \ast). Then S and T are said to be occasionally weakly compatible if there is a point u for which $M(Tu, Su, t) = 1$ implise $M(TSu, STu, t) = 1$ for $t > 0$.

It is easy to see that two weakly compatible maps are occasionally weakly compatible.

Definition 2.18 Let X be a set. A symmetric on X is a mapping $d : X \times X \rightarrow [0, \infty)$ such that $d(x, y) = 0$. iff $x = y$ and $d(x, y) = d(y, x)$ for all x, y in X.

Definition 2.19 The 3-tuple (X, M, \ast) is called fuzzy symmetric space if X is an arbitrary Set, \ast is a continuous t-norm and M is a fuzzy set in $X^2 \times [0, \infty]$ satisfying the following condition : for all x, y, z in X and $s, t > 0$.

- (i) $M(x, y, 0) = 0$.
- (ii) $M(x, y, t) = 1$, for all $t > 0$, if and only if $x = y$.
- (iii) $M(x, y, t) = M(y, x, t)$
- (iv) $M(x, y, .) : [0, \infty) \rightarrow [0, 1]$ is left continuous.
- (v) $\lim_{t \rightarrow \infty} M(x, y, t) = 1$.

3 Main Result

Now, we give our main result.

Common fixed point for two mappings:

Theorem 3.1 Let A and S be two self owc mappings of a fuzzy metric space (X, M, \ast) with $t \ast t \geq t$ such that for each $x \neq y$ in X, $t > 0$ and for $0 < q < 1$.

\[
M(Ax, Ay, qt) \geq \min \{M(Sx, Sy, t), M(Sx, Ay, t), M(Sy, Ay, t), M(Ax, Sx, t), M(Ax, Sy, t)\}
\]

Then A and S have a unique common fixed point.
Common fixed point theorem

Proof: Since A and S are owc so there exit a \(\in X \) such that \(Aa = Sa \) implies \(ASa = SAa \).

That is there exist a \(\in X \) such that \(M(Aa, Sa, t) = 1 \) implies \(M(ASa, SAa, t) = 1 \) for \(t > 0 \).

and since \(Sa = Aa \Rightarrow SSa = SAa \) and \(ASa = AAa \)

Thus \(SSa = SAa = ASa = AAa \).

Now we show that \(AAa = Sa \) is common fixed point of A and S. Suppose that \(AAa \neq Sa \). Then by inequality (3.1.1)

\[
M(Aa, AAa, qt) \geq \min \{ M(Sa, AAa, t), M(Sa, AAa, t), M(AAa, AAa, t), M(Aa, Sa, t), M(Aa, AAa, t) \}
\]

\[
= \min \{ M(Aa, AAa, t), M(Aa, AAa, t), M(AAa, AAa, t), M(Aa, Aa, t), M(Aa, AAa, t) \}
\]

\[
= \min \{ M(Aa, AAa, t), M(Aa, AAa, t), 1, 1, M(Aa, AAa, t) \}
\]

\[
M(Aa, AAa, qt) \geq M(Aa, AAa, t)
\]

Then by lemma 2.12

\(Aa = AAa \)

Thus \(AAa = SAa = Aa \).

Hence \(AAa = Sa \) is common fixed point of A and S.

Finally we show that the fixed point is unique.

Let \(x_0 \) and \(y_0 \) be two common fixed points of A and S.

Then \(Ax_0 = Sx_0 = x_0 \) and \(Ay_0 = Sy_0 = y_0 \) and by (3.1.1)

\[
M(Ax_0, Ay_0, qt) \geq \min \{ M(Sx_0, Ay_0, t), M(Sx_0, Ay_0, t), M(Sy_0, Ay_0, t), M(Sy_0, Ay_0, t) \}
\]

\[
= \min \{ M(Ax_0, Ay_0, t), M(Ax_0, Ay_0, t), M(Ay_0, Ay_0, t), M(Ax_0, Ay_0, t) \}
\]

\[
= \min \{ M(Ax_0, Ay_0, t), M(Ax_0, Ay_0, t), 1, 1, M(Ax_0, Ay_0, t) \}
\]

\[
M(Ax_0, Ay_0, qt) \geq M(Ax_0, Ay_0, t)
\]

Then by lemma (2.12) \(Ax_0 = Ay_0 \) \(i.e. \ x_0 = y_0 \) Proved.

Example: Let \(X = [1, \infty] \) define A, S : \(X \rightarrow X \) by \(Ax = x^2 \) and \(Sx = 3x - 2 \) for all \(x \in X \).

Let the fuzzy metric \(M(x, y, t) = \frac{1}{t + |x - y|} \) Then for all \(x \neq y \)

A and S satisfy the condition (3.1.1) and \(Ax = Sx \) iff \(x = 1 \) or \(x = 2 \).

\(AS(1) = SA(1) = 1 \) but \(AS(2) \neq SA(2) \) \(i.e. \ 1 \) is common fixed point A and S.
Common fixed point for three mappings:

Theorem 3.2 Let A, B and S be three self-mappings of a fuzzy metric $(X, M, *)$ with $t * t \geq t$ such that for each $x \neq y$ in X, $t > 0$ and for $0 < q < 1$.

\[
M(Ax, By, qt) \geq \min \{M(Sx, Sy, t), M(Sx, By, t), M(Sy, By, t),
M(Ax, Sx, t), M(Sy, Ax, t)\} \quad \text{...(3.2.1)}
\]

And pair (A, S) or (B, S) is owc pair. \quad \text{...(3.2.2)}

Then A, B and S have a unique common fixed point.

Proof: Since (A, S) is owc pair [from 3.2.2]

Then there is an element $u \in X$ such that $Au = Su$ and $ASu = SAu$.

First, we prove that $Au = Bu = Su$.

Indeed, by inequality (3.2.1) we get

\[
M(Au, Bu, qt) \geq \min \{M(Su, Su, t), M(Su, Bu, t), M(Su, Bu, t),
M(Au, Su, t), M(Su, Au, t)\}
= \min \{1, M(Au, Bu, t), M(Au, Bu, t), M(Au, Au, t), M(Au, Au, t)\}
= \min \{1, M(Au, Bu, t), M(Au, Bu, t), 1, 1\}
\]

\[
M(Au, Bu, qt) \geq M(Au, Bu, t)
\]

Then by lemma 2.12 $Au = Bu$ i.e. $Au = Bu = Su$.

Thus $ASu = SAu = ABu = SBu = AAu$

Now suppose that $BAu \neq AAu$. Then from (3.2.1) we get

\[
M(AAu, BAu, qt) \geq \min \{M(SAu, SAu, t), M(SAu, BAu, t), M(SAu, BAu, t),
M(AAu, SAu, t), M(SAu, AAu, t)\}
= \min \{M(AAu, AAu, t), M(AAu, BAu, t), M(AAu, BAu, t),
M(AAu, AAu, t), M(AAu, AAu, t)\}
= \min \{1, M(AAu, AAu, t), M(AAu, AAu, t), 1, 1\}
\]

\[
M(AAu, BAu, qt) \geq M(AAu, BAu, t)
\]

Hence by lemma 2.12 $AAu = BAu$ Thus $AAu = BAu = SAu$

If $AAu \neq Bu$ Again we have from (3.2.1)

\[
M(AAu, Bu, qt) \geq \min \{M(SAu, Su, t), M(SAu, Bu, t), M(SAu, Bu, t),
M(AAu, SAu, t), M(Su, AAu, t)\}
= \min \{M(AAu, Bu, t), M(AAu, Bu, t), M(AAu, Bu, t),
M(AAu, AAu, t), M(Bu, AAu, t)\}
= \min \{M(AAu, Bu, t), M(AAu, Bu, t), M(AAu, Bu, t), 1,
M(AAu, Bu, t)\}
\]

\[
M(AAu, Bu, qt) \geq M(AAu, Bu, t)
\]
Then by lemma 2.12
AAu = Bu.

i.e. AAu = Au = Bu = Su.
or AAu = BAu = SAu = Au = a (Let)
So, a = Au is common fixed point of mappings A, B and S.

Uniqueness:

Now Let x_0, y_0 be two distinct common fixed points of mappings A, B and S.

i.e. $Ax_0 = Bx_0 = Sx_0 = x_0$
and $Ay_0 = By_0 = Sy_0 = y_0$

So by condition (3.2.1)

$$M(Ax_0, By_0, qt) \geq \min \{M(Sx_0, Sy_0, t), M(Sx_0, By_0, t), M(Sy_0, By_0, t),$$
$$M(Ax_0, Sx_0, t), M(Sy_0, Ax_0, t)\}$$
$$\quad = \min \{M(Ax_0, By_0, t), M(Ax_0, By_0, t), M(By_0, By_0, t),$$
$$M(Ax_0, Ax_0, t), M(By_0, Ax_0, t)\}$$
$$\quad = \min \{M(Ax_0, By_0, t), M(Ax_0, By_0, t), 1, 1, M(Ax_0, By_0, t)\}$$

Then by lemma 2.12 $x_0 = y_0$.

Common fixed point for four mappings:

Theorem 3.3 Let A, B, S and T be four self mappings of a fuzzy metric space $(X, M, *)$ with $t * t \geq t$ such that for each $x \neq y$ in X, $t > 0$ and for $0 < q < 1$.

$$M(Ax, By, qt) \geq \min \{M(Sx, Ty, t), M(Sx, By, t), M(Ty, By, t),$$
$$M(Sx, Ax, t), M(Ty, Ax, t)\}$$

...(3.3.1)

And pairs (A, S) and (B, T) are owc. ...(33.2)

Then A, B, S and T have a unique common fixed point.

Proof: Since $(A, S), (B, T)$ is owc pair [from 3.3.2]

Then there is an element $u, v \in X$ such that $Au = Su$ and $ASu = SAu,$ $Bv = Tv$ and $BTv = TBv.$

First, we prove that $Au = Bv$

Indeed, by inequality (3.3.1) we get

$$M(Au, Bv, qt) \geq \min \{M(Su, Tv, t), M(Su, Bv, t), M(Tv, Bv, t),$$
$$M(Su, Au, t), M(Tv, Au, t)\}$$
\[= \min \{M(Au, Bv, t), M(Au, Bv, t), M(Bv, Bv, t),
M(Au, Au, t), M(Bv, Au, t)\}\]
\[= \min \{M(Au, Bv, t), M(Au, Bv, t), 1, 1, M(Au, Bv, t)\}\]
\[M(Au, Bv, qt) \geq M(Au, Bv, t).\]

Then from lemma 2.12

Hence \(Au = Su = Bv = Tv.\)

New suppose that \(AAu \neq Au.\) By using inequality (2.3.1) we obtain

\[Au = Bv\]

\[M(AAu, Bv, qt) \geq \min \{M(SAu, Tv, t), M(SAu, Bv, t), M(Tv, Bv, t),
M(SAu, AAu, t), M(Tv, AAu, t)\}\]
\[= \min \{M(ASu, Bv, t), M(ASu, Bv, t), M(Bv, Bv, t),
M(ASu, AAu, t), M(Bv, AAu, t)\}\]
\[= \min \{M(AAu, Bv, t), M(AAu, Bv, t), M(Bv, Bv, t),
M(AAu, AAu, t), M(Bv, AAu, t)\}\]
\[= \min \{M(AAu, Bv, t), M(AAu, Bv, t), 1, 1, M(AAu, Bv, t)\}\]
\[M(AAu, Bv, qt) \geq M(AAu, Bv, t).\]

So by lemma (2.12)

\(AAu = Bv\)

Since \(Au = Bv\) So, \(AAu = Au = ASu = SAu\)

Similarly \(BAu = TAu = Au\)

Therefore \(Au = Su = Bv = Tv\) is a common fixed point of mapping \(A, B, S\) and \(T.\)

Put \(Au = Su = Bv = Tv = x,\) then \(Ax = Sx = Bx = Tx = x.\)

Uniqueness:

Let \(x_0\) and \(y_0\) are two common fixed points of \(A, B, S\) and \(T\) such that \(x_0 \neq y_0\) then

\(x_0 = Ax_0 = Sx_0 = Bx_0 = Tx_0\) and \(y_0 = Ay_0 = Sy_0 = By_0 = Ty_0\)

From condition (3.3.1) we have

\[M(Ax_0, By_0, qt) \geq \min \{M(Sx_0, Ty_0, t), M(Sx_0, By_0, t), M(Ty_0, By_0, t),
M(Sx_0, Ax_0, t), M(Ty_0, Ax_0, t)\}\]
\[= \min \{M(Ax_0, By_0, t), M(Ax_0, By_0, t), M(By_0, By_0, t),
M(Ax_0, Ax_0, t), M(By_0, Ax_0, t)\}\]
\[= \min \{M(Ax_0, By_0, t), M(Ax_0, By_0, t), 1, M(Ax_0, By_0, t)\}\]

\[M(Ax_0, By_0, qt) \geq M(Ax_0, By_0, t)\]

Then by lemma 2.12. \(Ax_0 = By_0\)

Thus \(A, S, B, T\) have unique common fixed point.
Remark 3.4:
If we put $S = T$ in the statement of theorem of 3.3 then we can get statement of theorem 3.2.

Remark 3.5:
If we put $A = B$ and $S = T$ in the statement of theorem of 3.4 then we can get statement of theorem 3.1.

Remark 3.6:
If we put $A = B$ in the statement of theorem of 3.2 then we can get statement of theorem 3.1.

Thus theorem 3.2 and theorem 3.3 are generalizations of theorem 3.1.

The next theorem involves a function $F : [0,1] \rightarrow [0,1]$ satisfying the following conditions:

(i) F is increasing on $[0,1]$

(ii) $F(t) > t$, $\forall \ t \in (0,1]$ and $F(1) = 1$.

Theorem 3.7:
Let A and S be two self owc mappings of a fuzzy symmetric space $(X, M, *)$ with $t * t \geq t$ such that for each $x \neq y$ in X, $t > 0$.

(i) a function $F : [0,1] \rightarrow [0,1]$ satisfying the following conditions:

(a) F is increasing on $[0,1]$

(b) $F(t) > t$, $\forall \ t \in (0,1]$ and $F(1) = 1$.

and $M(Ax, Ay, t) > F[min \{M(Sx, Sy, t), M(Sx, Ay, t), M(Sy, Ay, t), M(Ax, Sx, t), M(Ax, Sy, t)\}]$...(3.7.1)

Then A and S have a unique common fixed point.

Theorem 3.8:
Let A, B and S be three self mappings of a fuzzy symmetric space $(X, M, *)$ with $t * t \geq t$ such that for each $x \neq y$ in X, $t > 0$ and function $F : [0,1] \rightarrow [0,1]$ satisfying the following conditions:

(a) F is increasing on $[0,1]$

(b) $F(t) > t$, $\forall \ t \in (0,1]$ and $F(1) = 1$.

$M(Ax, By, t) > F[min \{M(Sx, Sy, t), M(Sx, By, t), M(Sy, By, t), M(Ax, Sx, t), M(Sy, Ax, t)\}]$...(3.8.1)

and pair (A, S) or (B, S) is owc pair. ...(3.8.2)

Then A, B and S have a unique common fixed point.
Theorem 3.9 Let \(A, B, S \) and \(T \) be four self mappings of a fuzzy metric space \((X, M, \ast)\) with \(t \ast t \geq t \) such that for each \(x \neq y \) in \(X \), \(t > 0 \) and function \(F : [0,1] \to [0,1] \) satisfying the following conditions:

(a) \(F \) is increasing on \([0,1]\)

(b) \(F(t) > t, \ \forall \ t \in (0,1] \) and \(F(1) = 1 \).

\[
M(Ax, By, t) > F\left[\min\{M(Sx, Ty, t), M(Sx, By, t), M(Ty, By, t), M(Sx, Ax, t), M(Ty, Ax, t)\}\right] \quad \text{...(3.9.1)}
\]

and pairs \((A, S)\) and \((B, T)\) are owc. \quad \text{...(3.9.2)}

Then \(A, B, S \) and \(T \) have a unique common fixed point.

References

Received: April, 2011