A Note on the Symmetric Nonnegative Inverse Eigenvalue Problem

Ricardo L. Soto and Ana I. Julio

Departamento de Matemáticas
Universidad Católica del Norte
Casilla 1280, Antofagasta, Chile

Abstract

The symmetric nonnegative inverse eigenvalue problem is the problem of characterizing all possible spectra of $n \times n$ symmetric entrywise nonnegative matrices. The problem remains open for $n \geq 5$. A number of realizability criteria or sufficient conditions for the problem to have a solution are known. In this paper we show that most of these sufficient conditions can be obtained by the use of a result by Soto, Rojo, Moro, Borobia in [ELA 16 (2007) 1-18]. Moreover, by applying this result we may always compute a solution matrix.

Mathematics Subject Classification: 15A18

Keywords: nonnegative inverse eigenvalue problem

1 Introduction

The symmetric nonnegative inverse eigenvalue problem (hereafter SNIEP) is the problem of finding necessary and sufficient conditions for a list $\Lambda = \{\lambda_1, \lambda_2, \ldots, \lambda_n\}$ of real numbers to be the spectrum of an $n \times n$ symmetric nonnegative matrix. If there exists a symmetric nonnegative matrix A with spectrum Λ, we say that Λ is symmetrically realizable and that A is the realizing matrix. When Λ is a set of real numbers and the realizing matrix A is required to be nonnegative, not necessarily symmetric, the problem is called the real nonnegative inverse eigenvalue problem (RNIEP). This problem remains unsolved. A complete solution is only known for $n \leq 4$ [9, 11, 25]. Necessary conditions have been found in [9, 7, 1]. However, they are very far from the sufficient conditions, which are known in the literature about the problem. A

1Supported by Fondecyt 1085125, Chile.

2Corresponding author: rsoto@ucn.cl (R.L. Soto), ajt001@ucn.cl (A.I. Julio).
number of sufficient conditions for the existence of a solution to the \textit{RNIEP} are known [24, 12, 13, 15, 6, 2, 17, 16, 19]. In [10] the authors construct a map of the sufficient conditions for the \textit{RNIEP} and establish inclusion relations or independency relations between them. Sufficient conditions for the symmetric case (\textit{SNIEP}) have been obtained in [3, 23, 14, 20, 8, 21]. The \textit{RNIEP} and the \textit{SNIEP} are equivalent for $n \leq 4$ (see [4]), otherwise they are different (see [5]).

Our aim in this paper is to show the relevance of the following symmetric realizability criterion given in [21, Theorem 3.1], which we shall call the \textit{SRMB} criterion. In particular we will show that most of known results, which give realizability criteria for the problem to have a solution, may be obtained by applying the result in [21]. Moreover, the \textit{SRMB} criterion has a constructive proof, in the sense that it generates an algorithmic procedure to compute a realizing matrix.

Theorem 1.1 SRMB criterion [21]Let $\Lambda = \{\lambda_1, \ldots, \lambda_n\}$ be a set of real numbers with $\lambda_1 \geq \lambda_2 \geq \ldots \geq \lambda_n$ and, for some $t \leq n$, let $\omega_1, \ldots, \omega_t$ be real numbers satisfying $0 \leq \omega_k \leq \lambda_1$, $k = 1, \ldots, t$. Suppose there exist

i) a partition $\Lambda = \Lambda_1 \cup \ldots \cup \Lambda_t$, with $\Lambda_k = \{\lambda_{k1}, \lambda_{k2}, \ldots, \lambda_{kp_k}\}$, $\lambda_{11} = \lambda_1$, $\lambda_{k1} \geq 0$; $\lambda_{k1} \geq \ldots \geq \lambda_{kp_k}$, such that for each $k = 1, \ldots, t$ the set $\Gamma_k = \{\omega_k, \lambda_{k2}, \ldots, \lambda_{kp_k}\}$ is realizable by a symmetric nonnegative matrix of order p_k, and

ii) a symmetric nonnegative $t \times t$ matrix with eigenvalues $\lambda_{11}, \lambda_{21}, \ldots, \lambda_{t1}$ and diagonal entries $\omega_1, \omega_2, \ldots, \omega_t$.

Then Λ is realizable by a symmetric nonnegative matrix of order n.

The \textit{SRMB} criterion was obtained by applying the following result by Soto, Rojo, Moro, Borobia [21, Theorem 2.6]

Theorem 1.2 [21] Let A be an $n \times n$ symmetric matrix with eigenvalues $\lambda_1, \lambda_2, \ldots, \lambda_n$. Let $\{x_1, \ldots, x_r\}$ an orthonormal set of eigenvectors of A such that $AX = X\Omega$, where $X = [x_1 \mid x_2 \mid \cdots \mid x_r]$ and $\Omega = \text{diag}\{\lambda_1, \lambda_2, \ldots, \lambda_n\}$. Let C be any $r \times r$ symmetric matrix. Then the symmetric matrix $A + X C X^T$ has eigenvalues $\mu_1, \ldots, \mu_r, \lambda_{r+1}, \ldots, \lambda_n$, where μ_1, \ldots, μ_r are eigenvalues of the matrix $\Omega + C$.

Theorem 1.2 is a symmetric version of a result of Rado, introduced by Perfect in [13], which shows how to modify r eigenvalues of a matrix of order n, via a rank-r perturbation, without changing any of the remaining $(n-r)$ eigenvalues.
Rado Theorem was applied by Perfect in [13], to derive an efficient realizability criterion for the RNIEP. Surprisingly, this result was somehow ignored in the literature about the problem, until in [19], the authors rescue it and extend it to a new realizability criterion. In [22], by using the SRMB criterion, with an special partition of the list \(\Lambda \), the authors obtain efficient sufficient conditions.

2 Symmetric realizability criteria

It is well known that the RNIEP and the SNIEP are equivalent for \(n \leq 4 \) [4]), otherwise they are different [5]. In this section, our aim is to show that most of known symmetric realizability criteria can be obtained by applying Theorem 1.1. It was proved in [21] that SRMB criterion contains, strictly, all previous symmetric realizability criteria. The first results about symmetric nonnegative realization are due to Fiedler [3]. Several realizability criteria obtained for the RNIEP have later been shown to be realizability criteria for the SNIEP as well. Fiedler [3] and Radwan [14] proved, respectively, that Kellogg [6] and Borobia [2] realizability criteria are also symmetric realizability criteria. In [20] it was shown that Soto criterion in [17] is also a symmetric realizability criterion. Fiedler first showed that Suleimanova criterion for the RNIEP, is also a symmetric realizability criterion. Next, by using Theorem 1.1, we give an alternative proof of this fact:

Theorem 2.1 (Symmetric Suleimanova): Let \(\Lambda = \{\lambda_1, \lambda_2, \ldots, \lambda_n\} \) be satisfying

\[
\lambda_1 + \lambda_2 + \cdots + \lambda_n \geq 0 \quad \text{and} \quad \lambda_k < 0, \quad k = 2, \ldots, n.
\]

Then \(\Lambda \) is symmetrically realizable.

Proof. (SRMB using proof): For \(n = 1 \), the result is clear. Suppose \(n = 2 \) and \(\Lambda = \{\lambda_1, \lambda_2\} \) with \(\lambda_2 < 0 \). Consider the partition (as in [22, Theorem 4.1])

\[
\Lambda_1 = \{\lambda_1\}, \quad \Lambda_2 = \{\lambda_2\} \quad \text{with} \quad \Gamma_2 = \{\lambda_1, \lambda_2\}.
\]

Then, \(\Gamma_2 \) is realizable by the symmetric nonnegative matrix

\[
A_2 = \begin{bmatrix}
\frac{\lambda_1 + \lambda_2}{2} & \frac{\lambda_1 - \lambda_2}{2} \\
\frac{\lambda_1 - \lambda_2}{2} & \frac{\lambda_1 + \lambda_2}{2}
\end{bmatrix}.
\]

Now we look for a symmetric nonnegative matrix \(B \) with eigenvalue \(\lambda_1 \) and diagonal entry \(\lambda_1 \), that is \(B = [\lambda_1] \). Then

\[
A = A_2 + \begin{bmatrix}
\frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2} \\
\frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2}
\end{bmatrix} \begin{bmatrix} 0 & \frac{\sqrt{2}}{2} \end{bmatrix} = A_2.
\]
Suppose the result holds for $2 \leq k < n$. Then there exists a symmetric nonnegative matrix A_1 with spectrum $\{\lambda_1, \lambda_2, \ldots, \lambda_k\}$. Let $\Lambda' = \{\lambda_1, \ldots, \lambda_k, \lambda_{k+1}\}$ and consider the partition

$$
\Lambda'_1 = \{\lambda_1, \ldots, \lambda_k\}, \quad \Lambda'_2 = \{\lambda_{k+1}\}, \quad \Lambda'_j = \emptyset
$$

with $\Gamma_2 = \{\lambda_1 + \cdots + \lambda_k, \lambda_{k+1}\}$, $\Gamma_j = \{0\}$, $j = 3, \ldots, k + 1$.

Note that $\{-\lambda_{k+1}, \lambda_{k+1}\}$ is symmetrically realizable and $\lambda_1 + \cdots + \lambda_k \geq -\lambda_{k+1}$. Let A_j, $j = 2, \ldots, k + 1$, a symmetric nonnegative matrix realizing Γ_j. Let

$$
A_j = A_2 \oplus \cdots \oplus A_{k+1}; \quad X = [x_1 | \cdots | x_k] \quad \text{with}
$$

$$
x_1 = \left(\begin{array}{cccc}
\sqrt{2} & \sqrt{2} & 0 & \cdots & 0 \\
\end{array} \right)^T, \quad x_j = e_{j+1}, \quad j = 2, \ldots, k.
$$

The following sufficient conditions, due to Fiedler [3, Theorem 4.4], guarantee the existence of a symmetric nonnegative matrix with eigenvalues $\alpha_1 \geq \alpha_2 \geq \cdots \geq \alpha_t$ and diagonal entries $\omega_1 \geq \omega_2 \geq \cdots \geq \omega_t$.

Let the vectors $\alpha = (\alpha_1, \alpha_2, \ldots, \alpha_t)$ and $\omega = (\omega_1, \omega_2, \ldots, \omega_t)$. If

$$
\begin{align}
&i) \quad \alpha \text{ majorizes } \omega \quad \text{and} \\
&ii) \quad \omega_{k-1} \geq \lambda_k, \quad k = 2, \ldots, t - 1,
\end{align}
$$

then there exists a symmetric nonnegative matrix B with eigenvalues $\alpha_1, \ldots, \alpha_t$ and diagonal entries $\omega_1, \ldots, \omega_t$. Then it is clear from (1), that we may construct a symmetric nonnegative matrix B (see [21, Remarks 3.5, 3.7]) with spectrum $\{\lambda_1, \ldots, \lambda_k\}$ and diagonal entries $\lambda_1 + \cdots + \lambda_k, 0, \ldots, 0$.

Let $C = B - \text{diag}\{\lambda_1 + \cdots + \lambda_k, 0, \ldots, 0\}$. Then $A = M + XCX^T$ is symmetric nonnegative with spectrum Λ'.

Next we show that Perfect criterion in [12] is also a symmetric realizability criterion:

Theorem 2.2 [12] Let

$$
\Lambda = \{\lambda_0, \lambda_1, \lambda_{11}, \ldots, \lambda_{1p_1}, \ldots, \lambda_r, \lambda_{r1}, \ldots, \lambda_{rp_r}, \delta\},
$$

where $\lambda_0 \geq |\lambda|$, for $\lambda \in \Lambda$, $\sum_{\lambda \in \Lambda} \lambda \geq 0$, $\delta \leq 0$.

$\lambda_j \geq 0$ and $\lambda_{ji} \leq 0$ for $j = 1, \ldots, r$ and $i = 1, \ldots, p_j$. If

$$
\lambda_j + \delta \leq 0 \quad \text{and} \quad \lambda_j + \sum_{i=1}^{p_j} \lambda_{ji} \leq 0 \quad \text{for} \quad j = 1, \ldots, r,
$$

then Λ is symmetrically realizable.
Proof. (SRMB using proof) Let us consider the partition \(\Lambda = \Lambda_0 \cup_{i=1}^{r} \Lambda_i \), where

\[
\begin{align*}
\Lambda_0 &= \{\lambda_0, \delta\}, \text{ with } \Gamma_0 = \{-\delta, \delta\} \text{ and } \\
\Lambda_i &= \{\lambda_i, \lambda_{i1}, \ldots, \lambda_{ip_i}\}, \ i = 1, \ldots, r, \text{ with } \\
\Gamma_i &= \{-\sum_{j=1}^{p_i} \lambda_{ij}, \lambda_{i1}, \ldots, \lambda_{ip_i}\}, \ i = 1, \ldots, r.
\end{align*}
\]

We may assume, without loss of generality, that \(\sum_{\lambda \in \Lambda} \lambda = 0 \). Clearly, the lists \(\Gamma_i \) are symmetrically realizable (they are Suleimanova lists), say by matrices \(A_i, i = 0, \ldots, r \). Then

\[
M = A_0 \oplus A_1 \oplus \cdots \oplus A_r
\]

is symmetric nonnegative. Now we need to show that there exists a symmetric nonnegative matrix \(B \) with eigenvalues and diagonal entries

\[
\lambda_0, \lambda_1, \lambda_2, \ldots, \lambda_r
\]

\[
-\delta, -\sum_{j=1}^{p_i} \lambda_{ij}, \ldots, -\sum_{j=1}^{p_r} \lambda_{rj},
\]

respectively. We may re-order these eigenvalues and diagonal entries in such a way that

\[
\begin{align*}
\lambda_0 &\geq \lambda_1 \geq \cdots \geq \lambda_r \\
-\sum_{j=1}^{p_1} \lambda_{1j} &\geq \cdots \geq -\delta \geq \cdots \geq -\sum_{j=1}^{p_r} \lambda_{rj},
\end{align*}
\]

with \(-\delta\) in the corresponding place in between the sequence of \(-\sum_{j=1}^{p_i} \lambda_{ij}, i = 1, \ldots, r\). Since \(\sum_{\lambda \in \Lambda} \lambda = 0 \), the sufficient conditions in (1) are satisfied and there exists the required matrix \(B \). Then from Theorem 1.2, for appropriate matrices \(X \) and \(C \), \(A = M + XCX^T \) is symmetric nonnegative with spectrum \(\Lambda \).

Next, by using Theorem 1.2, we show that Kellogg criterion is also a symmetric realizability criterion. Besides, different from Kellogg and Fiedler, our proof generate an algorithmic procedure to compute the realizing matrix.

Theorem 2.3 [3] (Symmetric Kellogg) Let \(\Lambda = \{\lambda_1, \lambda_2, \ldots, \lambda_n\} \) be a list of real numbers with \(\lambda_1 \geq \lambda_2 \geq \cdots \geq \lambda_n \) and let \(p \) be the greatest index \(j \) (1 \(\leq j \leq n \)) for which \(\lambda_j \geq 0 \). Let the set of indices

\[
K = \{i : \lambda_i \geq 0 \text{ and } \lambda_i + \lambda_{n-i+2} < 0, \ i \in \{2, 3, \ldots, \left\lfloor \frac{n+1}{2} \right\rfloor\}\}.
\]
If
\[\lambda_1 + \sum_{i \in K, i < k} (\lambda_i + \lambda_{n-i+2}) + \lambda_{n-k+2} \geq 0 \quad \text{for all } k \in K, \]
(2)
and
\[\lambda_1 + \sum_{i \in K} (\lambda_i + \lambda_{n-i+2}) + \sum_{j=p+1}^{n-p+1} \lambda_j \geq 0, \quad \text{provided that } n \geq 2p, \]
(3)
then \(\Lambda \) is the spectrum of an \(n \times n \) symmetric nonnegative matrix.

Proof. (SRMB using proof). Suppose conditions (2) and (3) are satisfied and let \(K = \{k_1, k_2, \ldots, kt\} \) be the Kellogg set of indices. Consider the partition (SRMB partition in [21, Theorem 3.1]) \(\Lambda = \Lambda_1 \cup \bigcup_{i=1}^{t} \Lambda_{ki} \cup \Lambda_R \), where
\[
\Lambda_1 = \{\lambda_1, \lambda_{p+1}, \ldots, \lambda_{n-p+1}\} \\
\Lambda_{ki} = \{\lambda_{ki}, \lambda_{n-ki+2}\}, \quad k_i \in K, \quad i = 1, \ldots, t \\
\Lambda_R = \Lambda - \Lambda_1 - \bigcup_{i=1}^{t} \Lambda_{ki},
\]
with \(\lambda_{k_1} \geq \lambda_{k_2} \geq \cdots \geq \lambda_{kt} \). It is clear from (3) that
\[\Gamma_1 = \{\lambda_1 + \sum_{i=1}^{t} (\lambda_{ki} + \lambda_{n-ki+2}), \lambda_{p+1}, \ldots, \lambda_{n-p+1}\} \]
is symmetrically realizable (Observe that \(\Gamma_1 \) is a Suleimanova list). Let \(A_1 = A_1^T \geq 0 \) realizing \(\Gamma_1 \).

We associate, to each list \(\Lambda_{ki} \), a symmetric realizable list
\[\Gamma_{ki} = \{-\lambda_{n-ki+2}, \lambda_{n-ki+2}\} \]
with realizing \(2 \times 2 \) symmetric nonnegative matrix \(A_{ki}, \ i = 1, 2, \ldots, t \). Then \(M = A_1 \oplus A_{k_1} \oplus \cdots \oplus A_{kt} \) is symmetric nonnegative with spectrum \(\Gamma_1 \cup \bigcup_{i=1}^{t} \Gamma_{ki} \).

Observe that elements of the list \(\Lambda_R \), if there exist some-ones, are of the form \(\{\lambda_{ki}, \lambda_{n-ki+2}\} \) with \(\lambda_{ki} + \lambda_{n-ki+2} \geq 0 \). Then \(\Lambda_R \) is symmetrically realizable, say by \(A_R \).

Now we show that there exists a symmetric nonnegative matrix \(B \), of order \((t + 1)\), with eigenvalues and diagonal entries
\[\left\{ \begin{array}{l} \lambda_1, \lambda_{k_1}, \lambda_{k_2}, \ldots, \lambda_{kt} \quad \text{and} \\ \lambda_1 + \sum_{i=1}^{t} (\lambda_{ki} + \lambda_{n-ki+2}), -\lambda_{n-k_1+2}, \ldots, -\lambda_{n-kt+2}, \end{array} \right. \]
(4)
respectively. To do this, we show that sufficient conditions (1) are satisfied. We know that
\[-\lambda_{n-k_1+2} \geq -\lambda_{n-k_2+2} \geq \cdots \geq -\lambda_{n-kt+2} \geq 0. \]
Then we re-order the decreasing sequence of possible diagonal entries by setting
\[\omega = \lambda_1 + \sum_{i=1}^{t} (\lambda_{ki} + \lambda_{n-k_i+2}) \]
in the right place, say in position \(r + 1 \). Thus (4) becomes
\[
\left\{ \begin{array}{l}
\lambda_1, \lambda_{k_1}, \lambda_{k_2}, \ldots, \lambda_{kt} \\
-\lambda_{n-k_1+2}, \ldots, \omega, \ldots, -\lambda_{n-kt+2}.
\end{array} \right.
\tag{5}
\]
From (3) we have, respectively for \(k_1, k_2, \ldots, k_t \) in \(K \), that
\[
\begin{align*}
\lambda_1 & \geq -\lambda_{n-k_1+2} \\
\lambda_1 + \lambda_{k_1} & \geq -\lambda_{n-k_1+2} - \lambda_{n-k_2+2} \\
\lambda_1 + \lambda_{k_1} + \lambda_{k_2} & \geq -\lambda_{n-k_1+2} - \lambda_{n-k_2+2} - \lambda_{n-k_3+2} \\
& \vdots \\
\lambda_1 + \sum_{i=1}^{s-1} \lambda_{k_i} & \geq -\sum_{i=1}^{s} \lambda_{n-k_i+2}, \ s = 1, \ldots, t - 1
\end{align*}
\]
and
\[
\lambda_1 + \sum_{i=1}^{t} (\lambda_{k_i} + \lambda_{n-k_i+2}) - \sum_{i=1}^{r} \lambda_{n-k_i+2} = \lambda_1 + \lambda_{k_1} + \cdots + \lambda_{kt}.
\]
Observe that for \(\omega = \lambda_1 + \sum_{i=1}^{t} (\lambda_{k_i} + \lambda_{n-k_i+2}) \) in position \(r + 1 \) in the decreasing sequence of possible diagonal entries, we have
\[
\begin{align*}
\lambda_1 + \sum_{i=1}^{r} \lambda_{k_i} & \geq \lambda_1 + \sum_{i=1}^{r} \lambda_{k_i} + \sum_{i=r+1}^{t} (\lambda_{k_i} + \lambda_{n-k_i+2}) \\
& = -\sum_{i=1}^{r} \lambda_{n-k_i+2} + \omega,
\end{align*}
\]
and
\[
\lambda_1 + \sum_{i=1}^{r+1} \lambda_{k_i} \geq -\sum_{i=1}^{r+1} \lambda_{n-k_i+2} + \omega.
\]
Thus, \(i \) in (1) holds. Finally, since \(-\lambda_{n-k_i+2} \geq \lambda_{ki} \) for all \(ki \in K \), and for \(\omega \) in position \(r + 1 \) we have \(\omega \geq -\lambda_{n-k(r+1)+2} \geq \lambda_{k(r+1)} \), then \(ii \) in (1) holds. Hence \(B \) there exists and it can be constructed (see [21, Remarks 3.5, 3.7]). Let
\[
M' = A_{k_1} \oplus \cdots \oplus A_1 \oplus \cdots \oplus A_{kt} \text{ with } A_1 \text{ in position } r + 1.
\]
Therefore, from Theorem 1.2, for \(C = B - \text{diag}B \), the matrix \(M' + XCX^T \) is symmetric nonnegative with spectrum \(\Lambda_1 \cup \cup_{i=1}^{t} \Lambda_{ki}. \) Hence \(A = (M' + XCX^T) \oplus A_R \) is the desired matrix realizing \(\Lambda. \) ☑
Now we show that Borobia realizability criterion \cite{2} is also a symmetric realizability criterion. Different from Borobia and Radwan, our proof generate an algorithmic procedure to construct the realizing matrix.

Theorem 2.4 \cite{14} (Symmetric Borobia): Let \(\Lambda = \{ \lambda_1, \lambda_2, \ldots, \lambda_n \} \) be a list of real numbers with \(\lambda_1 \geq \lambda_2 \geq \ldots \geq \lambda_n \) and let \(p \) be the greatest index \(j \) (\(1 \leq j \leq n \)) for which \(\lambda_j \geq 0 \). If there exists a partition \(J_1 \cup J_2 \cup \ldots \cup J_t \) of \(J = \{ \lambda_{p+1}, \lambda_{p+2}, \ldots, \lambda_n \} \), for some \(1 \leq t \leq n - p + 1 \), such that

\[
\begin{align*}
\lambda_1 & \geq \lambda_2 \geq \ldots \geq \lambda_p \geq \sum_{\lambda \in J_1} \lambda \\
& \geq \sum_{\lambda \in J_2} \lambda \geq \ldots \geq \sum_{\lambda \in J_t} \lambda
\end{align*}
\]

(6)

satisfies the Kellogg conditions (2) and (3), then \(\Lambda \) is the spectrum of a symmetric nonnegative matrix of order.

First we need the following immediate lemma:

Lemma 2.1 \cite{18} Let \(B_k \) a \(2 \times 2 \) symmetric nonnegative matrix realizing \(\{ -\lambda_{n-k+2}, \lambda_{n-k+2} \} \) (Suleimanova list), where

\[
\lambda_{n-k+2} = \mu_1 + \ldots + \mu_{s-1}, \quad \mu_i < 0, \quad i = 1, \ldots, s-1.
\]

Then there exists an \(s \times s \) symmetric nonnegative matrix \(C_k \) realizing \(\{ -\lambda_{n-k+2}, \mu_1, \ldots, \mu_{s-1} \} \) (Suleimanova list).

Proof. Theorem 2.4 (SRMB using proof). The same proof of Theorem 2.3 holds here, except for one detail: the list in (6) has less elements than the original list \(\Lambda \) and we need to obtain an \(n \times n \) symmetric nonnegative matrix realizing \(\Lambda \). Then, before to apply Theorem 1.2, we apply, if it is necessary, to each \(2 \times 2 \) matrix \(A_{ki} \) realizing \(\Gamma_{ki} = \{ -\lambda_{n-k+2}, \lambda_{n-k+2} \} \), \(ki \in K \) (and possibly to the matrix \(A_1 \) realizing \(\Gamma_1 \)), the Lemma 2.1 to obtain a symmetric nonnegative matrix \(\tilde{A}_{ki} \) with spectrum \(\{ -\lambda_{n-k+2}, \mu_1, \ldots, \mu_{s-1} \} \), where

\[
\lambda_{n-k+2} = \mu_1 + \ldots + \mu_{s-1}, \quad \mu_i < 0, \quad i = 1, \ldots, s-1.
\]

Next, we consider the following result of Laffey-Šmigoc \cite{8}, and give an alternative proof of it.

Theorem 2.5 \cite{8} Let \(A \) be an \(n \times n \) irreducible symmetric nonnegative matrix with spectrum \(\{ \lambda_1, \ldots, \lambda_n \} \) and a diagonal \(c \). Let \(B \) be an \(m \times m \) symmetric nonnegative matrix with spectrum \(\{ \mu_1, \ldots, \mu_m \} \).

i) If \(\mu_1 \leq c \), then there exists a symmetric nonnegative matrix \(C \), of order \(n + m - 1 \), with spectrum

\[
\{ \lambda_1, \ldots, \lambda_n, \mu_2, \ldots, \mu_m \}.
\]

ii) If \(c \leq \mu_1 \), then there exists a symmetric nonnegative matrix \(C \), of order \(n + m - 1 \), with spectrum

\[
\{ \lambda_1 + \mu_1 - c, \lambda_2, \ldots, \lambda_n, \mu_2, \ldots, \mu_m \}.
\]
Proof. (SRMB using proof):
i) Let \(\Lambda = \{ \lambda_1, \ldots, \lambda_n, \mu_2, \ldots, \mu_m \} \) and consider the partition (as in [22, Theorem 4.1])

\[
\Lambda = \Lambda_1 \cup \Lambda_2 \cup \cdots \cup \Lambda_{n+1}, \quad \text{where} \quad \\
\Lambda_1 = \{ \lambda_1, \ldots, \lambda_n \} \\
\Lambda_2 = \{ \mu_2, \ldots, \mu_m \} \\
\Lambda_k = \emptyset, \quad k = 3, \ldots, n+1.
\]

We know from the hypothesis that \(\Lambda_1 \) is symmetrically realizable by \(A \). Let \(c, c_2, \ldots, c_n \) be the diagonal entries of \(A \) and consider the associated symmetrically realizable lists

\[
\Gamma_2 = \{ c, \mu_2, \ldots, \mu_m \}; \quad \Gamma_k = \{ c_{k-1} \}, \quad k = 3, \ldots, n+1.
\]

Since \(c \geq \mu_1 \) and \(\{ \mu_1, \ldots, \mu_m \} \) is the spectrum of \(B \) (symmetric nonnegative), and \(c_{k-1} \geq 0 \), then all list \(\Gamma_k \) are symmetrically realizable. Let \(A_2 \) be symmetric nonnegative realizing \(\Gamma_2 \) and let \([c_{k-1}] \) be the \(1 \times 1 \) matrix realizing \(\Gamma_k, \ k = 3, \ldots, n+1 \). Then

\[
M = A_2 \oplus [c_2] \oplus \cdots \oplus [c_n]
\]

is symmetric nonnegative of order \(n + m - 1 \) with spectrum

\[
\{ c, \mu_2, \ldots, \mu_m, c_2, \ldots, c_n \}.
\]

Now, since \(A \) is symmetric nonnegative with spectrum \(\Lambda_1 \) and diagonal entries \(c, c_2, \ldots, c_n \), then from Theorem 1.2 with \(C = A - \text{diag}\{ c, c_2, \ldots, c_n \} \) and \(X \) as in Theorem 1.2, the matrix \(M + XCX^T \) is symmetric nonnegative with spectrum \(\Lambda \).

ii) Now, let \(c \leq \mu_1 \) and let \(\Lambda = \{ \lambda_1 + \mu_1 - c, \lambda_2, \ldots, \lambda_n, \mu_2, \ldots, \mu_m \} \). Consider the partition (as in [22, Theorem 4.1])

\[
\Lambda = \Lambda_1 \cup \Lambda_2 \cup \cdots \cup \Lambda_{n+1}, \quad \text{where} \quad \\
\Lambda_1 = \{ \lambda_1 + \mu_1 - c, \lambda_2, \ldots, \lambda_n \} \\
\Lambda_2 = \{ \mu_2, \ldots, \mu_m \} \\
\Lambda_k = \emptyset, \quad k = 3, \ldots, n+1.
\]

It is clear that \(\Lambda_1 \) is symmetrically realizable since \(\mu_1 - c \geq 0 \). Consider the associated symmetrically realizable lists

\[
\Gamma_2 = \{ \mu_1, \mu_2, \ldots, \mu_m \}; \quad \Gamma_k = \{ c_{k-1} \}, \quad k = 3, \ldots, n+1.
\]
We know that the symmetric nonnegative matrix B realizes Γ_2 and $[c_{k-1}]$ realizes $\Gamma_k, k = 3, \ldots, n + 1$. Let

$$M = B \oplus [c_2] \oplus \cdots \oplus [c_n].$$

Now we apply Lemma 6 in [8] to the matrix A (with $t = \mu_1 - c$) to obtain a symmetric nonnegative matrix A_0 with spectrum Λ_1 and diagonal entries μ_1, c_2, \ldots, c_n. Then from Theorem 1.2, with $C = A_0 - \text{diag}\{\mu_1, c_2, \ldots c_n\}$, the matrix $M + XCX^T$ is symmetric nonnegative with spectrum Λ. ■

In [14], the author presents the following unpublished result due to Loewy, which we prove here by using SRMB result:

Theorem 2.6 Let $n \geq 4$, $\lambda_1 \geq \lambda_2 \geq 0 \geq \lambda_3 \geq \cdots \geq \lambda_n$, $\sum_{i=1}^{n} \lambda_i \geq 0$.

Suppose K_1, K_2 is a partition of $\{3, 4, \ldots, n\}$ such that $\lambda_1 \geq -\sum_{i \in K_1} \lambda_i \geq -\sum_{i \in K_2} \lambda_i$. Then there exists a symmetric nonnegative matrix with spectrum $\Lambda = \{\lambda_1, \lambda_2, \ldots, \lambda_n\}$.

Proof. Let $\sum_{i=1}^{n} \lambda_i = s \geq 0$. Consider the partition $\Lambda = \Lambda_0 \cup \Lambda_1 \cup \Lambda_2$, where

$$\Lambda_0 = \{\lambda_1, \lambda_2\}, \quad \Lambda_1 = \{\lambda_i : i \in K_1\} = \{\lambda_{11}, \lambda_{12}, \ldots, \lambda_{1r}\},$$
$$\Lambda_2 = \{\lambda_i : i \in K_2\} = \{\lambda_{21}, \lambda_{22}, \ldots, \lambda_{2t}\}, \quad r + t = n - 2.$$

with symmetrically realizable associated lists (Suleimanova lists)

$$\Gamma_1 = \{\omega_1, \lambda_{11}, \lambda_{12}, \ldots, \lambda_{1r}\}; \quad \Gamma_2 = \{\omega_2, \lambda_{21}, \lambda_{22}, \ldots, \lambda_{2t}\}$$

where $\omega_1 = -\sum_{i \in K_1} \lambda_i + \alpha, \omega_2 = -\sum_{i \in K_2} \lambda_i + \beta$ with $\alpha + \beta = s, 0 \leq \alpha, \beta \leq s$, in such a way that $0 \leq \omega_1, \omega_2 \leq \lambda_1$. Let A_1 and A_2 symmetric nonnegative matrices realizing Γ_1 and Γ_2, respectively. Since $\omega_1 + \omega_2 = \lambda_1 + \lambda_2$, then there exists a 2×2 symmetric nonnegative matrix B with eigenvalues λ_1, λ_2 and diagonal entries ω_1, ω_2. Thus, from Theorem 1.2, with $C = B - \text{diag}B$,

$$A = \begin{bmatrix} A_1 & 0 \\ 0 & A_2 \end{bmatrix} + XCX^T$$

is symmetric nonnegative with spectrum Λ. ■

Next we give an alternative proof of the following result of Fiedler:
Lemma 2.2 (Fiedler, [3]). Let A be a symmetric $m \times m$ matrix with spectrum $\Lambda_1 = \{\alpha_1, \ldots, \alpha_m\}$. Let u, $\|u\| = 1$, be a unit eigenvector of A corresponding to α_1. Let B be a symmetric $n \times n$ matrix with spectrum $\Lambda_2 = \{\beta_1, \ldots, \beta_n\}$. Let v, $\|v\| = 1$, be a unit eigenvector of A corresponding to β_1. Then for any ρ, the matrix

$$C = \begin{pmatrix} A & \rho uv^T \\ \rho vu^T & B \end{pmatrix}$$

has spectrum $\Lambda = \{\gamma_1, \gamma_2, \alpha_2, \ldots, \alpha_m, \beta_2, \ldots, \beta_n\}$, where γ_1, γ_2 are eigenvalues of the matrix

$$\hat{C} = \begin{pmatrix} \alpha_1 & \rho \\ \rho & \beta_1 \end{pmatrix}.$$

Proof. (SRMB using proof). The matrix $M = \begin{pmatrix} A & 0 \\ 0 & B \end{pmatrix}$ is symmetric of order $(m + n)$ with eigenvalues $\alpha_1, \ldots, \alpha_m, \beta_1, \ldots, \beta_n$. Let

$$x_1 = (u_1, \ldots, u_m, 0, \ldots, 0)^T,$$

$$x_2 = (0, \ldots, 0, v_1, \ldots, v_n)^T$$

$(m + n)$-dimensional vectors, where the u'_i's and the v'_i's are the entries of the vectors u and v, respectively. Let $\Omega = \text{diag}\{\alpha_1, \beta_1\}$, and $X = [x_1 \mid x_2]$, where the columns x_1, x_2 form an orthonormal set. Then $AX = X\Omega$. Define the symmetric 2×2 matrix

$$C = \begin{pmatrix} 0 & \rho \\ \rho & 0 \end{pmatrix}.$$

Then

$$XCX^T = \begin{pmatrix} 0 & \rho uv^T \\ \rho vu^T & 0 \end{pmatrix}$$

and

$$M + XCX^T = \begin{pmatrix} A & \rho uv^T \\ \rho vu^T & B \end{pmatrix}.$$

From Theorem 1.2, $M + XCX^T$ is symmetric with spectrum

$$\Lambda = \{\gamma_1, \gamma_2, \alpha_2, \ldots, \alpha_m, \beta_2, \ldots, \beta_n\},$$

where γ_1 and γ_2 are eigenvalues of the matrix

$$\Omega + C = \begin{pmatrix} \alpha_1 & \rho \\ \rho & \beta_1 \end{pmatrix}.$$
for any ρ. ■

Observe that if the matrices A and B are symmetric nonnegative and $\rho > 0$, then $M + XCT$ is also symmetric nonnegative. Theorem 1.2 also allow us to generalize Lemma 2.2. In fact, if we have symmetric matrices A_1, A_2, \ldots, A_p, with corresponding spectra $\Lambda_i = \{\alpha_{i1}, \alpha_{i2}, \ldots, \alpha_{in}\}$, $i = 1, 2, \ldots, p$ and unitary eigenvectors $u^{(i)}$ associated, respectively, to the eigenvalues α_{i1}, then we may obtain a symmetric $n \times n$ matrix

$$A = (A_1 \oplus A_2 \oplus \ldots \oplus A_p) + XCT,$$

with spectrum $\{\gamma_1, \ldots, \gamma_p, \alpha_{11}, \ldots, \alpha_{n1}, \alpha_{12}, \ldots, \alpha_{n2}, \ldots, \alpha_{np}, \ldots, \alpha_{np}\}$, where $\gamma_1, \ldots, \gamma_p$ are eigenvalues of the matrix $\Omega + C$, with $\Omega = \text{diag}\{\alpha_{11}, \alpha_{12}, \ldots, \alpha_{1p}\}$.

References

Received: April, 2011