A Gap Function Approach for Concave Programming

S. Batbileg
National University of Mongolia, Ulaanbaatar
batbileg_sh@yahoo.com

J. Enkhbayar
Mongolian Business School, Ulaanbaatar
mon_enkhee@yahoo.com

R. Enkhbat
National University of Mongolia, Ulaanbaatar
enkhbat46@yahoo.com

Abstract
We consider a convex maximization problem or equivalently, concave programming. We introduce a gap function for the problem and propose an algorithm for solving it based on the global optimality conditions by Strekalovsky [9]. A convergence of the algorithm has been shown.

1 Introduction

Concave programming or convex maximization problem plays an important role in theory of global optimization. Many engineering and economics problems can be formulated as concave programming [6]. The existing methods and algorithm for solving concave programming until 1987 were mainly cutting plane and branch and bound methods [8],[5] and [6]. Global optimality conditions for concave programming for the first time were obtained in [9] by Strekalovsky in 1987.

An algorithm for solving the problem based on the global optimality conditions using a gap function approach was proposed in [1].

A convergent algorithm for maximizing a strongly convex function has been studied in [1]. In this paper, we generalize the results of [1] for the convex maximization problem using the same gap function. The paper organized as
follows. In section 2, we consider the global optimality conditions for the convex maximization problem. Section 3 is devoted to construction of the algorithm for solving concave programming and its convergence.

2 Global Optimality Condition

Consider the convex maximization problem, or a concave programming

\[f(x) \rightarrow \max, \; x \in D, \tag{1} \]

where \(f: \mathbb{R}^n \rightarrow \mathbb{R} \) is a convex and differentiable function and \(D \subset \mathbb{R}^n \) is a nonempty arbitrary subset of \(\mathbb{R}^n \). Then an optimality condition for this problem is given by the following theorem:

Theorem 2.1 [2] Let \(z \) be a solution of problem (1), and let

\[E_c(f) = \{ y \in \mathbb{R}^n \mid f(y) = c \} \]

Then

\[\langle f'(y), x - y \rangle \leq 0 \text{ for all } y \in E_{f(z)}(f) \text{ and } x \in D. \tag{2} \]

If, in addition, \(f'(y) \neq 0 \) holds for all \(y \in E_{f(z)}(f) \), then condition (2) is sufficient for \(z \in D \) being a solution to problem (1).

Remark 2.1 There is another related result obtained by Hiriart-Urruty and Ledyaev in 1996 [4].

Theorem 2.2 [9] Suppose \(f \) is convex and \(D \) is closed convex in problem (1). Let a point \(z \in D \) satisfy \(-\infty \leq \inf_D f < f(z) \). Then \(z \) is a global maximizer of (1) if and only if

\[\partial f(x) \subset N(x|D) \text{ for all } x \in D \text{ and } x \in E_{f(z)}(f), \]

where \(N(x|D) \) is the normal cone to \(D \) at \(x \) defined as:

\[N(x|D) = \{ c \in \mathbb{R}^n \mid \langle c, y - x \rangle \leq 0, \; y \in D \}. \]

Remark 2.2 If \(D \) is convex, we obtain from (2) with \(y = z \) the well-known local optimality condition [7]:

\[\langle f'(z), x - z \rangle \leq 0, \; \forall x \in D. \]

Thus it is clear that the global optimality condition (2) is connected to the classical extremum theory. Note, however, that condition (2) does not require the convexity of \(D \) at all.

Remark 2.3 In order to conclude that a point \(z' \) in \(D \) is not a solution to problem (1), Theorem 2.2 tells that we need to find a pair \(x, y \in \mathbb{R}^n \) such that

\[\langle f'(y), x - y \rangle > 0, \; f(y) = f(z'), \; x \in D. \]
3 Algorithm and Its Convergence

Consider the convex maximization problem as a particular case of problem (1),

$$f(x) \rightarrow \max, \ x \in D, \tag{3}$$

where $f : \mathbb{R}^n \to \mathbb{R}$ is convex and continuously differentiable, $D \subset \mathbb{R}^n$ is a compact set.

Define the gap function $\pi(y)$ as follows:

$$\pi(y) = \max_{x \in D} \langle f'(y), x - y \rangle, \ y \in \mathbb{R}^n. \tag{4}$$

It has been shown in [1] that function $\pi(y)$ is continuous on \mathbb{R}^n.

Before presenting an algorithm for solving problem (1), it is useful to restate Theorem 2.1 in a convenient way via the following function $\theta(z)$ defined for $z \in D$.

$$\theta(z) = \sup_{y \in E_{f(z)}} \pi(y),$$

where $\pi(y) = \max_{x \in D} \langle f'(y), x - y \rangle$. We can note that

$$\pi(y) \leq \theta(z) \text{ for all } y \in E_{f(z)}.$$

Lemma 3.1 If there is a point $y \in \mathbb{R}^n$ such that $\pi(y) > 0$ and $f(y) = f(z)$ for a feasible point $z \in D$, then

$$f(x(y)) > f(z)$$

holds, where $x(y) \in D$ satisfies $\langle f'(y), x(y) \rangle = \max_{x \in D} \langle f'(y), x \rangle$.

Proof. By the definition of $\pi(y)$, we have

$$\pi(y) = \max_{x \in D} \langle f'(y), x - y \rangle = \langle f'(y), x(y) - y \rangle.$$

Since f is convex, we have

$$f(u) - f(v) \geq \langle f'(v), u - v \rangle$$

for all $u, v \in \mathbb{R}^n$. Therefore, the assumption in the lemma implies that

$$f(x(y)) - f(z) = f(x(y)) - f(y) \geq \langle f'(y), x(y) - y \rangle = \pi(y) > 0. \quad \Box$$

Theorem 3.1 Let $z \in D$ and $f'(z) \neq 0$. If $\theta(z) = 0$ then the point z is a solution to problem (1).
Proof is immediate from the following inequalities:
\[
\langle f'(y), x - y \rangle \leq \pi(y) = \max_{x \in D} \langle f'(y), x - y \rangle \leq \sup_{y \in E_{f(z)}(f)} \max_{x \in D} \langle f'(y), x - y \rangle = \theta(z) = 0
\]
which hold for all \(x \in D \) and \(y \in E_{f(z)}(f) \). □

Lemma 3.2 Let \(f(x) \) is a continuously differentiable convex function on a compact set \(D \in \mathbb{R}^n \). If
\[
\{ \arg \min_{x \in \mathbb{R}^n} f(x) \} \notin D
\]
then there exists a positive number \(\delta \) such that \(|f'(x)| \geq \delta > 0 \) for all \(x \in D \).

Proof. Note that \(f'(x) \neq 0 \) for all \(x \in D \). Write down the following inequality:
\[
|f'(x)| \geq \inf_{x \in D} |f'(x)|, \forall x \in D.
\]
Since \(D \) is compact and \(f \) is continuously differentiable, then we have
\[
|f'(x)| \geq \inf_{x \in D} |f'(x)| = \delta > 0
\]
which proves the lemma. □

Algorithm MAX

Input: A convex function \(f \), and a convex compact set \(D \), and sequence \(\epsilon_k \) such that \(\epsilon_k > 0 \), \(\forall k \) and \(\sum_{k=0}^{\infty} \epsilon_k < \infty \)

Output: A solution \(x \) to problem (1); i.e., a global maximizer of \(f \) over \(D \).

Step 1. Choose a point \(x^0 \in D \) such that \(f'(x^0) \neq 0 \). Set \(k := 0 \).

Step 2. Solve the following problem
\[
\sup \pi(y) \text{ subject to } y \in E_{f(x^k)}(f).
\]
Let \(y^k \) be a solution of this problem, i.e.,
\[
\pi(y^k) \geq \sup_{y \in E_{f(x^k)}(f)} \max_{x \in D} \langle f'(y), x - y \rangle - \epsilon_k.
\]
Let \(\theta(x^k) \leq \pi(y^k) + \epsilon_k \), and let \(x^{k+1} \) be a solution satisfying
\[
\pi(y^k) = \max_{x \in D} \langle f'(y^k), x - y^k \rangle = \langle f'(y^k), x^{k+1} - y^k \rangle.
\]

Step 3. If \(\theta(x^k) = 0 \) then output \(x = x^k \) and terminate. Otherwise set \(k := k + 1 \) and return to Step 2. □

The convergence of this Algorithm is given by the following theorem.
Theorem 3.2 Assume that \(f : \mathbb{R}^n \to \mathbb{R} \) be convex and continuously differentiable. Then the sequence \(\{x^k\}, (k = 0, 1, \ldots) \) generated by Algorithm MAX is a maximizing sequence for problem (1), that is,

\[
\lim_{k \to \infty} f(x^k) = \max_{x \in D} f(x),
\]

and every accumulation point of the sequence \(\{x^k\} \) is a global maximizer of (1).

Proof. Note that Algorithm MAX generates points \(x^k \in D \) and \(f(x^k) \leq f^* \), where \(f^* = f(x^*) = \max_{x \in D} f(x) \). Clearly, for all \(y \in E_{f(x^k)}(f) \) and \(x \in D \) we have

\[
\langle f'(y), x - y \rangle \leq \pi(y) \leq \theta(x^k).
\]

If there exists a \(k \) such that \(\theta(x^k) = 0 \) then, by theorem 3.2, \(x^k \) is a solution to problem (1) and, consequently, the desired result follows. Therefore, without loss of generality, we can suppose that \(\theta(x^k) > 0 \) for all \(k = 0, 1, \ldots \), and prove the theorem by contradiction.

If the assertion is false, that is, \(x^k \) is not a maximizing sequence for problem (2.6), the following inequality holds.

\[
\lim_{k \to \infty} \sup f(x^k) < f^*. \tag{5}
\]

First, we show that the sequence \(\{f(x^k)\} \) is increasing. From the construction of the Algorithm and the definition of \(\theta(x^k) \), we have

\[
\theta(x^k) > \pi(y^k) = \langle f'(y^k), x^{k+1} - y^k \rangle - \epsilon_k,
\]

where \(y^k \in E_{f(x^k)}(f) \). Then this fact and the convexity of \(f \) imply that

\[
f(x^{k+1}) - f(x^k) = f(x^{k+1}) - f(y^k) \geq \langle f'(y^k), x^{k+1} - y^k \rangle.
\]

and

\[
f(x^{k+1}) - f(x^k) + \epsilon_k \geq \langle f'(y^k), x^{k+1} - y^k \rangle + \epsilon_k = \pi(y^k) + \epsilon_k > \theta(x^k) > 0.
\]

Therefore, \(f(x^{k+1}) > f(x^k) - \epsilon_k \) for all \(k \). Furthermore, as the sequence \(\{f(x^k)\} \) is bounded from above by \(f^* \), it has a limit due to [3]:

\[
\lim_{k \to \infty} f(x^k) = A < +\infty,
\]

and hence we have

\[
\lim_{k \to \infty} (f(x^{k+1}) - f(x^k)) = 0.
\]
Then from the above results, we can easily conclude that
\[\lim_{k \to \infty} \theta(x^k) = 0. \]

(6)

Now introduce the following sets which are closed and convex.
\[C_k = \{ x \in \mathbb{R}^n : f(x) \leq f(x^k) \}, \quad k = 0, 1, 2, \ldots \]

It is clear that \(x^* \not\in C_k \) and \(\text{int } C_k \neq \emptyset \). Then take the projection \(u^k \in C_k \) of the point \(x^* \) on \(C_k \) such that
\[\| u^k - x^* \| = \min_{x \in C_k} \| x - x^* \|. \]

(7)

Note that
\[\| u^k - x^* \| > 0 \]

(8)

holds because \(x^* \not\in C_k \). The optimality condition at the solution \(u^k \) for the convex minimization problem (7) is given as follows [10, 11].
\[\begin{cases}
 u^k - x^* + \lambda_k f'(u^k) = 0 \\
 f(u^k) = f(x^k),
\end{cases} \]

(9)

where \(\lambda_k \) is the Lagrange multiplier. Hence, we have
\[\lambda_k = \frac{\| u^k - x^* \|}{\| f'(u^k) \|}. \]

(10)

Then condition \(f(u^k) = f(x^k) \) of (9) and \(\theta(x^k) \) imply
\[\theta(x^k) = \sup_{y \in E_{f(x^k)}(f)} \pi(y) \geq \max_{x \in D} \langle f'(u^k), x - u^k \rangle \geq \langle f'(u^k), x^* - u^k \rangle. \]

(11)

Using (9), (10) and (11), we have
\[\langle f'(u^k), x^* - u^k \rangle = \| f'(u^k) \||x^* - u^k| \leq \theta(x^k). \]

(12)

Also by Lemma 3.2, there exists a positive number \(\delta \) which satisfies
\[\| f'(u^k) \| \geq \delta \]

(13)

for all \(k \). Therefore, from (12) and (13), we conclude that
\[0 \leq \delta \| x^* - u^k \| \leq \theta(x^k). \]

Taking into account (6), we have
\[\lim_{k \to \infty} u^k = x^*. \]
Hence, by continuity of \(f \) on \(\mathbb{R}^n \),

\[
\lim_{k \to \infty} f(x^k) = \lim_{k \to \infty} f(u^k) = f(x^*), \tag{14}
\]

which yields a contradiction to (5).
Consequently, \(\{x^k\} \subset D \) is a maximizing sequence for problem (1). Since \(D \) is compact, we can always select the convergent subsequences \(\{x^{k_l}\} \) from \(\{x^k\} \) such that

\[
\lim_{l \to \infty} x^{k_l} = \bar{x} \in D.
\]

Then together with (14), we obtain

\[
\lim_{l \to \infty} f(x^{k_l}) = f(\bar{x}) = f^*,
\]

which completes the proof. \(\square\)

4 Conclusion.

A gap function was introduced for constructing an algorithm for solving the convex maximization problem. It has been shown that the proposed algorithm converges globally. A numerical implementation of the algorithm will be provided in next papers.

5 Acknowledgements.

This work was supported by ARC and KFAC.

References

Received: April, 2011