Convergence of Quotients of Consecutive Terms of a Generalized Secondary Fibonacci Sequence

Lorenzo J. Martínez
Universidad de Caldas
lorenzo.martinez_h@ucaldas.edu.co

Alvaro H. Salas
Universidad de Caldas, Manizales, Colombia
Department of Mathematics
Universidad Nacional de Colombia
asalash2002@yahoo.com
FIZMAKO Research Group

Abstract

In this paper we consider a generalized Secondary Fibonacci sequence. We study the convergence of the sequence of quotients of its consecutive terms and we give an estimation for the speed of its convergence.

Keywords and phrases: Fibonacci numbers, secondary Fibonacci sequence, speed of convergence, metallic means family

1 Introduction

Some numbers are well known because of their mathematical properties, applications and presence in different areas, e.g., \(\phi = \frac{1+\sqrt{5}}{2} \) and \(\theta = 1 + \sqrt{2} \). These constants are called the golden mean and the silver mean, respectively [12, 7, 5, 9]. \(\phi \) and \(\theta \) have a lot of geometric, algebraic and analytical mathematical properties which are useful in the study of architectural proportion, art, computer science, and growth of some biological systems [6, 3, 10, 17, 15].

Analogously to the way the golden mean is related to the Fibonacci Sequence, the silver mean is related to the Pell Sequence [9]. These sequences are defined recursively by:
\[F_n = \begin{cases} 0 & \text{if } n = 1 \\ 1 & \text{if } n = 2 \\ F_{n-1} + F_{n-2} & \text{if } n \geq 3 \end{cases} \tag{1} \]

and

\[P_n = \begin{cases} 0 & \text{if } n = 1 \\ 1 & \text{if } n = 2 \\ 2P_{n-1} + P_{n-2} & \text{if } n \geq 3 \end{cases} \tag{2} \]

respectively. The theory and generalization of Fibonacci Numbers and the golden mean is an important branch of modern mathematics \[20, 15\]. According to \[18\], \(\varphi \) and \(\theta \) are members of a very special group of quadratic positive irrational numbers known as ”the Metallic Means Family (MMF)” and arise as positive solution of the equations

\[x^2 - px - q = 0; \; p, q \in \mathbb{Z}^+. \tag{3} \]

With appropriate values for \(p \) and \(q \) in (3) a member of the Metallic Means Family can be obtained, i.e., the golden mean, by setting \(p = 1 \) and \(q = 1 \); the silver mean, with \(p = 2 \) and \(q = 1 \); the cooper mean by setting \(p = 1 \) and \(q = 2 \) and so on[17].

The Fibonacci and Pell sequences are particular cases of the generalized secondary Fibonacci sequence” (GSFS). They satisfy relations of the type

\[c_n = \begin{cases} a & \text{if } n = 1 \\ b & \text{if } n = 2 \\ pc_{n-1} + qc_{n-2} & \text{if } n \geq 3 \end{cases}; \; p, q \in \mathbb{Z}^+. \tag{4} \]

Theorem 1. Suppose that \(a, b, p, q > 0 \) are positive numbers such that

\[\frac{b}{a} = r \neq \mu = \frac{p + \sqrt{p^2 + 4q}}{2}. \tag{5} \]

Then the sequence \(\{a_n\}_{n=1}^{\infty} \) defined by

\[a_n = \frac{c_{n+1}}{c_n}, \tag{6} \]

where \(\{c_n\}_{n=1}^{\infty} \) is defined by (4) converges and

\[\lim_{n \to \infty} a_n = \frac{p + \sqrt{p^2 + 4q}}{2}. \tag{7} \]
Proof. Let \(a, b, p, q > 0 \). Suppose that
\[
 r > \mu.
\] (8)
The case when \(r < \mu \) may be considered analogously.
First at all, \(c_n > 0 \) for all \(n = 1, 2, 3, \ldots \). Indeed, \(c_1 = a > 0 \) and \(c_2 = b > 0 \).
Suppose that \(a_j > 0 \) for \(j = 2, \ldots, k \). Then
\[
c_{k+1} = pc_k + qc_{k-1} > pc_k > 0.
\]
Now, observe that
\[
0 < a_n = \frac{c_{n+1}}{c_n} = \frac{pc_n + qc_{n-1}}{c_n} = p + \frac{qc_{n-1}}{c_n} = p + \frac{q}{a_{n-1}} \quad \text{for } n = 2, 3, \ldots \quad (9)
\]
It follows from (9) that
\[
a_n = p + \frac{q}{p + \frac{q}{a_{n-2}}} \quad \text{for } n = 3, 4, \ldots \quad (10)
\]
In particular,
\[
a_{n+2} - a_n = \frac{q^2}{(q + pa_n)(q + pa_{n-2})} (a_n - a_{n-2}) \quad \text{for } n = 3, 4, 5, \ldots \quad (11)
\]
It is clear that \(\mu \) is the positive root of the equation \(x^2 - px - q = 0 \). In particular,
\[
\mu^2 = p\mu + q \text{ and since } r > \mu, r^2 - pr - q > 0. \quad (12)
\]
We now will show that the subsequence \(\{a_{2n}\}_{n=1}^\infty \) of even terms is increasing and the subsequence \(\{a_{2n-1}\}_{n=1}^\infty \) of odd terms is decreasing and
\[
a_{2m} \leq \mu \leq a_{2n-1} \text{ for any } m, n = 1, 2, 3, \ldots \quad (13)
\]
Indeed, observe that \(a_1 = \frac{a_2}{c_1} = \frac{b}{a} = r \) and from (10) and (12) we obtain
\[
a_3 - a_1 = p + \frac{q}{p + \frac{q}{r}} - r = -p\frac{r^2 - pr - q}{q + pr} < 0. \quad (14)
\]
On the other hand, from (9)
\[
a_4 - a_2 = p + \frac{q}{a_3} - \left(p + \frac{q}{a_1}\right) = \frac{q(a_1 - a_3)}{a_1 a_3} > 0. \quad (15)
\]
Then

$$0 < a_3 < a_1 \text{ and } a_4 > a_2 > 0.$$ \hfill (16)

We now proceed by induction. Suppose that

$$a_{2k+1} < a_{2k-1} \text{ and } a_{2k+2} > a_{2k} \text{ for some } k \geq 1.$$

Making use of (11) gives

$$a_{2k+3} - a_{2k+1} = q^2 \frac{a_{2k+1} - a_{2k-1}}{(q + pa_{2k+1})(q + pa_{2k-1})} < 0 \hfill (17)$$

and

$$a_{2k+4} - a_{2k+2} = q^2 \frac{a_{2k+2} - a_{2k}}{(q + pa_{2k+2})(q + pa_{2k})} > 0 \hfill (18)$$

By the principle of mathematical induction,

$$a_{2n+1} < a_{2n-1} \text{ and } a_{2n+2} > a_{2n} \text{ for all } n = 1, 2, 3, \ldots.$$

We now will show that

$$a_{2n-1} > \mu \text{ and } a_{2n} < \mu \text{ for all } n \geq 1.$$ \hfill (20)

We again proceed inductively. In view of (8) we have $-\mu > -r$ and then

$$a_2 - \mu = p + \frac{q}{r} - \mu > p + \frac{q}{r} - r = -\frac{1}{r}(r^2 - pr - q) < 0$$

and

$$a_1 - \mu = r - \mu > 0.$$

We have proved that

$$a_1 > \mu \text{ and } a_2 < \mu.$$

Suppose that

$$a_{2k-1} > \mu \text{ and } a_{2k} < \mu \text{ for some } k \geq 1.$$

Then, by virtue of (11),

$$a_{2k+1} - \mu = p + \frac{q}{p + \frac{q}{a_{2k-1}}} - \mu > p + \frac{q}{p + \frac{q}{\mu}} - \mu = -p\mu^2 - p\mu - q \frac{q + p\mu}{q + p\mu} = 0$$
and
\[a_{2k+2} - \mu = p + \frac{q}{p + \frac{q}{a_{2k}}} - \mu < \frac{q}{p + \frac{q}{\mu}} - \mu = -p \frac{2 \mu^2 - p \mu - q}{q + p \mu} = 0. \]

We have proved (19) and (20), that is,
\[a_2 < a_4 < a_6 < \cdots < \mu < \cdots < a_5 < a_3 < a_1. \]

By the Weierstrass theorem, there exist
\[0 < \alpha = \lim_{n \to \infty} a_{2n} \text{ and } \beta = \lim_{n \to \infty} a_{2n-1}. \]

We have
\[\alpha = \lim_{n \to \infty} a_{2n+2} = \lim_{n \to \infty} \left(p + \frac{q}{p + \frac{q}{a_{2n}}} \right) = p + \frac{q}{p + \frac{q}{\alpha}} \]
from where
\[p \frac{\alpha^2 - p \alpha - q}{q + p \mu} = 0 \]
and then \(\alpha = \mu. \) In a similar way, \(\beta = \mu. \) This implies that \(\lim_{n \to \infty} a_n = \mu. \)

Indeed, let be \(\varepsilon > 0 \) any positive number. There exist two positive integer numbers \(N_1 \) and \(N_2 \) such that
\[|a_{2n} - \mu| < \varepsilon \text{ for } n > N_1 \text{ and } |a_{2n-1} - \mu| < \varepsilon \text{ for } n > N_2. \]

Let \(N = \max(2N_1, 2N_2) \) and let \(k > N. \) If \(k \) is even, say \(k = 2n \) then \(2n > N \geq 2N_1, \) \(n > N_1 \) and then \(|a_k - \mu| < \varepsilon. \) If \(k \) is odd, say \(k = 2n-1 \) then \(2n-1 > N \geq 2N_2, \) \(n > N_2 + 1/2 > N_2 \) and then \(|a_k - \mu| < \varepsilon. \) This proves (7).

Remark. If \(r < \mu \) then we may show that the subsequence of even terms of the sequence \(\{a_n\}_{n=1}^{\infty} \) is decreasing, while the subsequence of odd terms of this sequence is increasing and
\[a_1 < a_3 < a_5 < \cdots < \mu < \cdots < a_6 < a_4 < a_2. \]

This happens, for example, if \(a = b = p = q = 1 \) (Fibonacci sequence) and \(a = b = 1, p = 2, q = 1 \) (Pell sequence). Thus, for the Fibonacci sequence,
\[r = 1 < \mu = \frac{1 + \sqrt{5}}{2}. \]
and for the Pell sequence,

\[r = 1 < \mu = 1 + \sqrt{2}. \]

On the other hand, if \(r = \mu \) we may show that \(\{a_n\}_{n=1}^{\infty} \) is a constant sequence and each of its terms equals \(\mu \). Then \(\{a_n\}_{n=1}^{\infty} \) converges to \(\mu \). Thus, in any case, \(a_n \to \mu \ (n \to \infty) \).

We now proceed to estimate the speed of convergence of the sequence \(\{a_n\}_{n=1}^{\infty} \). We have the following

Theorem. Let \(C = \max\{|a_3 - a_1|, |a_4 - a_2|\} \). If \(r \neq \mu \) there exists a constant \(\rho \) such that \(0 < \rho < 1 \) for which

\[|a_n - \mu| < C \rho^{n-1} \]

for any \(n = 1, 2, 3, \ldots \) \((21) \)

Proof. Suppose that \(r > \mu \) (the case \(r < \mu \) is similar). Making use of (17), (18) and (20) we obtain

\[|a_{2k+3} - a_{2k+1}| = \frac{q^2}{(q + pa_{2k+1}) (q + pa_{2k-1})} |a_{2k+1} - a_{2k-1}| \]

\[< \frac{q^2}{(q + \mu p) (q + \mu p)} |a_{2k+1} - a_{2k-1}| \]

\[= \frac{q^2}{(q + \mu p)^2} |a_{2k+1} - a_{2k-1}|. \]

We have proved that

\[|a_{2k+3} - a_{2k+1}| < \rho_1 |a_{2k+1} - a_{2k-1}| \]

for any \(k \geq 1 \), \((22) \)

where

\[\rho_1 = \frac{q^2}{(q + \mu p)^2} \in (0, 1). \] \((23) \)

On the other hand, since \(a_{2k-1} < a_1 = r \) and \(a_{2k-1} > \mu \),

\[a_{2k} = p + \frac{q}{a_{2k-1}} = \frac{pa_{2k-1} + q}{a_{2k-1}} > \frac{p\mu + q}{r}. \] \((24) \)

Similarly,

\[a_{2k+2} = p + \frac{q}{a_{2k+1}} = \frac{pa_{2k+1} + q}{a_{2k+1}} > \frac{p\mu + q}{r}. \] \((25) \)
We have
\[|a_{2k+4} - a_{2k+2}| = \frac{q^2 |a_{2k+2} - a_{2k}|}{(q + pa_{2k+2})(q + pa_{2k})} < \frac{q^2 |a_{2k+2} - a_{2k}|}{(q + p(p\mu + q))(q + p(p\mu + q))} \]
\[= \frac{q^2 r^2}{(q + p\mu^2 + pq)^2} |a_{2k+2} - a_{2k}| \]
\[= \frac{q^2}{(q + p\mu^2 + pq)^2} |a_{2k+2} - a_{2k}|. \]

We have proved that
\[|a_{2k+4} - a_{2k+2}| < \rho_2 |a_{2k+2} - a_{2k}| \quad \text{for any } k \geq 1, \quad (26) \]
where
\[\rho_2 = \frac{q^2}{(q + p\mu^2 + pq)^2} \in (0, 1). \quad (27) \]

Let \(A_n = a_{2n-1} \) and \(B_n = a_{2n} \) (\(n = 1, 2, 3, \ldots \)). Taking into account (22) we obtain for \(k \geq 1 \)
\[|a_5 - a_3| < \rho_1 |a_3 - a_1| \]
\[|a_7 - a_5| < \rho_1 |a_5 - a_3| \]
\[\vdots \]
\[|a_{2k-1} - a_{2k-3}| < \rho_1 |a_{2k-3} - a_{2k-5}| \]
\[|a_{2k+1} - a_{2k-1}| < \rho_1 |a_{2k-1} - a_{2k-3}| \]

Multiplying term by term these inequalities yields
\[|A_{k+1} - A_k| = |a_{2k+1} - a_{2k-1}| < \rho_1^{k-1} |a_3 - a_1| = \rho_1^{k-1} C_1, \quad \text{where } C_1 = |a_3 - a_1|. \quad (28) \]

In a similar way,
\[|B_{k+1} - B_k| = |a_{2k+2} - a_{2k}| < \rho_2^{k-1} |a_4 - a_2| = \rho_2^{k-1} C_2, \quad \text{where } C_2 = |a_4 - a_2|. \quad (29) \]
Inequalities (28) and (29) hold for any \(k \geq 1. \)

Let \(m > n. \) We have

\[
|A_m - A_n| < \sum_{k=n}^{m-1} |A_{k+1} - A_k| < \sum_{k=n}^{m-1} \rho_1^{k-1} C_1 < \sum_{k=n}^{\infty} \rho_1^{k-1} C_1 = \frac{C_1 \rho_1^{n-1}}{1 - \rho_1}.
\]

We thus have

\[
|A_n - A_m| < \frac{C_1 \rho_1^{n-1}}{1 - \rho_1} \text{ for any } m > n.
\]

Letting \(m \to \infty \) in this last inequality gives

\[
|a_{2n-1} - \mu| \leq \frac{C_1 \rho_1^{n-1}}{1 - \rho_1} \text{ for any } n \geq 1. \tag{30}
\]

Similarly,

\[
|a_{2n} - \mu| \leq \frac{C_2 \rho_2^{n-1}}{1 - \rho_2} \text{ for any } n \geq 1 \tag{31}
\]

Finally, observe that

\[
\rho_2 = \frac{q^2}{(q + \frac{p\nu^2}{\mu})^2} > \frac{q^2}{(q + \frac{p\mu^2}{\mu})^2} = \frac{q^2}{(q + p\mu)^2} = \rho_1 \tag{32}
\]

and then

\[
\frac{C_2 \rho_2^{n-1}}{1 - \rho_2} > \frac{C_2 \rho_1^{n-1}}{1 - \rho_1} \tag{33}
\]

It is clear from (30), (31) and (33) that

\[
|a_n - \mu| < \frac{C \rho^{n-1}}{1 - \rho}, \tag{34}
\]

where \(C = \max\{C_1, C_2\} \) and \(\rho = \rho_2 = \max\{\rho_1, \rho_2\}. \) This proves the theorem.
2 Conclusions

We generalized some results concerning the Fibonacci and Pell numbers. We did not make use of the theorem about the existence and uniqueness of the solution of a general linear recurrence sequence of second order. The main result in this work, i.e. Theorem 1, can also be obtained directly by using Binnet’s Formula [20],[3].

References

Received: February, 2011